BEMERKUNGEN

ÜBER DIE

GECKONIDEN-SAMMLUNG

IM ZOOLOGISCHEN MUSEUM

DER KAIERLICHER AKADEMIE DER WISSENSCHAFTEN ZU ST. PETERSBURG.

VON

Dr. Alexander Strauch.

Mit 1 lithographischen Tafel.

(Le 27 mai 1886.)

ST.-PETERSBOURG, 1887.

Commissionnaires de l'Académie Impériale des sciences:

St.-Pétersbourg: M. Eggers et Cie et J. Glasounof; Riga: M. N. Kymmel; Leipzig: Voss' Sortiment (G. Haessel).

Prix: 70 Kop. = 2 Mrk. 30 Pf.
Imprimé par ordre de l'Académie Impériale des sciences.

Mars 1887.

C. Vassélofsky, Secrétaire perpétuel

Imprimerie de l'Académie Impériale des sciences
Vass.-Ostr., 9 ligne, n° 12.

Monuments de l'Acad. imp. des sciences VilIan Serie.
Wie es jedoch auf Erden überhaupt nichts Vollkommeneres gibt, so hat auch der Boulenger’sche Catalog seine Mängel und Fehler, die aber freilich im Vergleich zu der ganzen Arbeit nur geringfügig sind und auch leicht beseitigt werden könnten. Während in demselben namentlich die Gattungen und Arten ganz vorzüglich charakterisirt sind, ist die Charakteristik der Familien durchaus ungenügend, da sie fast ausschliesslich auf osteologische Merkmale basirt und folglich für die Determination absolut unbranchbar ist. Da der Hauptzweck des ganzen Werkes, wie Dr. Günther in einer dem ersten Bande vorausschickten Notiz ausdrücklich hervorhebt, mit darin besteht, die Bestimmung der in demselben behandelten Arten zu ermöglichen oder zu erleichtern, so hätten bei der Charakteristik der Familien, gleich in der Übersicht über dieselben im ersten Bande, solche Merkmale angegeben werden müssen, die nicht bloss an skeletirten, sondern auch an intakten Exemplaren sichtbar sind. Statt dessen begnügt sich Herr Boulenger, abgesehen von der Zunge, ausschliesslich mit osteologischen Merkmalen und obendrauf noch fast nur mit solchen, deren Untersuchung zum mindesten eine theilweise blossomlegung des Schädels erfordert und nicht etwa durch einen einfachen, das Object wenig oder gar nicht beschädigenden Hautschnitt bewerkstelligt werden kann. Wie soll denn unter solchen Umständen Jemand, der nicht Herpetolog von Fach ist, eine Eidechse bestimmen? Zunächst muss er doch wissen, zu welcher der vielen Familien sie gehört, und das kann er bei der von Herrn Boulenger gegebenen Eintheilung nur dann erfahren, wenn er das Object selbst der Untersuchung opfert, oder doch wenigstens in sehr eingreifender Weise beschädigt; dazu wird sich aber nicht Jeder leicht entschliessen, zumal wenn es sich um eine seltene Art oder gar um ein Unicum handelt. Mir scheint es daher ein arger Missgriff von Seiten Boulenger’s, dass er bei Charakteristik der Familien nur osteologische Merkmale benutzt, alle übrigen aber, mit alleiniger Ausnahme der Zunge, geradezu gefisentlich vermieden hat, und es wäre daher nicht bloss wünschenswerth, sondern, wenn der Catalog seinem Zwecke vollkommen entsprechen soll, geradezu unerlässlich, dass am Schlusse der Arbeit eine neue Übersicht über die Familien gegeben würde, in welcher neben den osteologischen, auch die andern, äussersch wahrnehmbaren Merkmale berücksichtigt wären.

Osteologische Merkmale haben sicherlich ihren unbestreitbaren Werth, dürften meiner Meinung nach in der Systematik aber nur dann in den Vordergrund gestellt werden, wenn sie mit anderen, äussersch sichtbaren, wenn auch scheinbar ganz unwesentlichen Organisationseigenthümlichkeiten Hand in Hand gehen, also gewissermaassen das bestätigea Moment für diese letzteren bilden, und dass ein solcher Connex in vielen, ja wahrscheinlich in den meisten Fällen besteht, geht schon aus dem Umstände hervor, dass ein grosser Theil der von Boulenger fast ausschliesslich auf osteologische Merkmale basirten Familien genau mit den Familien zusammenfällt, welche auch früher, wo der Knochenbau nur in zweiter Linie in Betracht gezogen wurde, nach anderen Merkmalen unterschieden worden sind. Wo hingegen ein solcher Zusammenhang zwischen dem Knochenbau und den übrigen Orga-
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

nizationsverhältnissen nicht besteht, oder wenigstens noch nicht nachgewiesen ist, haben die verborgenen osteologischen Charaktere für die Systematik nur eine untergeordnete Bedeutung; verdienen zum mindesten in keiner Weise den Vorzug vor den äußerlich sichtbaren Merkmalen, die man z. B. dem Bau der Zunge, der Form und Befestigungsweise der Zähne und namentlich der Beschaffenheit des Hautskelets entlehnt hat. Ausserdem kann ich aber auch nicht umhin, zu bemerken, dass mir gegenwärtig der Zeitpunkt noch keineswegs gekommen zu sein scheint, wo man das System der Eidechsen ausschliesslich, oder doch vorzugsweise auf osteologische Merkmale begründen könnte, denn dazu ist noch ein viel zu geringer Theil dieser Thierformen auf den Knochenbau untersucht und man ist demzufolge beständig auf Analogismen angewiesen und in die Nothwendigkeit versetzt, Verhältnisse zu supponiren, deren factisches Bestehen noch mehr als zweifelhaft ist. Ein solches Verfahren widerspricht aber ganz entschieden dem Geiste der Systematik, denn bisher sind wir gewohnt gewesen, jedes Merkmal, das wir zur Unterscheidung irgend einer Gruppe benutzen wollten, erst an allen, oder doch möglichst vielen Formen auf seinen Werth und seine Beständigkeit zu prüfen, was bei osteologischen Merkmalen schon deshalb nicht angeht, weil zur Zeit kaum ein Zehntel aller bekannten Eidechsen-Arten auf das Skelet untersucht ist.

1*
Dr. A. Strauch,

Zunächst muss ich bemerken, dass sich die 3 namenlosen Gruppen, in welche Boulen-ger seine Unterordnung Lacertilia vera einheit, genau genommen, nur auf 2 reduciren, da nur die Beschaffenheit der Zungenbekleidung wirklich ein durchgreifendes Merkmal ab-giebt, die Form des Schlüsselbeines dagegen in systematischer Beziehung schon deshalb nur einen ganz untergeordneten Werth haben kann, weil dieses Organ mit dem ganzen Schultergestü bekanntlich allen denjenigen Eidechsen entweder ganz, oder doch so gut wie ganz fehlt, die, wie z. B. die Pygopodidae, Aniellidae, Aneityropidae und Dibamidae, keine Vorderextremitäten besitzen. Aber auch das der Zungsbekleidung entlehnte Unterscheidungsmerkmal ist in so fern nicht ganz durchgreifend, als sowohl bei den Xenosauri-den, als auch bei den Anguiden nur die Basis der Zunge mit Zotten bekleidet ist, die Spitze dagegen genau ebensolche imbricate schuppenförmige Papillen zeigt, wie sie bei den For-men der dritten Gruppe Regel sind. Ferner ist es mir nicht gelungen, zu eruiren, welchem Princip Herr Boulenenger bei Bestimmung der Reihenfolge für die einzelnen Familien seiner Unterordnung Lacertilia vera gefolgt ist, und was ihm z. B. bewogen hat, die Familie Py-gopodidae, deren Repräsentanten bekanntlich keine Vorderextremitäten und folglich auch kein Schlüsselbein besitzen, gerade zu der Gruppe mit einfacher, am proximalen Ende nicht erweiterter Clavicula zu rechnen und zwischen die Familien Uropatitidae und Agamidae zu stellen, zu denen sie doch auch nicht die geringste Verwandtschaft zeigt. Ebenso ist auch die Stellung der Familie Aniellidae zwischen den Anguiden und Helodermatidinae kaum zu rechtfertigen, denn wenn die Anielliden auch durch den Habitus und die Beschuppung mit einzelnen Formen der Anguiden übereinstimmen, so bieten sie doch genau dieselbe Ueber-einstimmung auch mit den Pygopodiden dar und im Bau des Schädels weichen sie von allen Familien der 2ten Gruppe durchaus ab und zeigen namentlich durch den Mangel der Columella cranii und des knöchernen Interorbitalseptums die grösste Verwandtschaft mit den Dibamiden und Amphisbaeniden, denen diese Knochen gleichfalls fehlen. Da Boulenenger seine Familien hauptsächlich durch osteologische, den Bau des Schädels entlehnte Merkmale, namentlich durch die An- oder Abwesenheit der beiden Knochenbrücken, des Arcus postorbitalis und des Arcus frontotemporalis (postfronto-squamosal arch), so wie durch das Vorhandensein oder Fehlen der knöchernen Überdachung der Fossa supratem- poralis charakterisirt hat, so sollte man annehmen, dass diese Verhältnisse bei Bestim-mung der Reihenfolge der Familien maassgebend gewesen sind, doch ist das keineswegs durchweg der Fall, denn in der 2ten seiner namenlosen Gruppen beinigt die Reihe der Famil-iien mit den Uropatitiden und Pygopodiden, deren Schädel durch den Mangel der beiden Knochenbrücken ausgezeichnet ist, darauf folgen die Agamiden, Iguaniden und Xenosauriden bei denen die genannten Knochenbrücken vorhanden, die Fossa supratemporalis aber nicht knöchern überdacht ist, dann die Zonuriden und Anguiden mit ausgebildeten Knochen-brücken und knöchern überdachter Fossa supratemporalis, darauf die Anielliden, bei denen wie-der die Knochenbrücken fehlen, dann die Helodermatiden, mit vollständigem Arcus postor-bitalis, aber ohne Arcus frontotemporalis und endlich die Varaniden, bei denen gerade um-
gekehrt der Arcus frontotemporalis vorhanden, der Arcus postorbitalis aber unvollständig ist, und denen ebenso, wie selbstverständlich auch den beiden vorhergehenden, die knöcherne Ueberdachung der Fossa supratemporalis fehlt. Ganz ähnlich steht es auch um die Reihenfolge der Familien in der 3. Gruppe. Hier macht die Familie der Xantusiiden den Anfang, bei welcher der Schädel beide Knochenbrücken und eine knöchern überdachte Fossa supratemporalis besitzt, dann folgen die Tejiden mit ausgebildeten Knochenbrücken, aber ohne knöcherne Ueberdachung der Schläfengrube, darauf die Amphibanaiden mit niedrig entwickeltem Schädel, an welchem die Knochenbrücken fehlen, als dann die Lacertiden und Gerrhosauriden, deren Schädel ebenso gebildet ist, wie derjenige der Xantusiiden, d. h. beide Knochenbrücken und das Knochendach über der Fossa supratemporalis besitzt, darauf die Scinciden, welche im Schädelbau wieder mit den Tejiden übereinstimmen, indem bei ihnen die beiden Knochenbrücken wohl vorhanden sind, die Ueberdachung der Schläfengrube aber fehlt, und endlich die Anelytropiden und Dibamiden, deren Schädel ebenso niedrig entwickelt ist, wie derjenige der Amphibanaiden, und weder die Knochenbrücken, noch das Knochendach zeigt. Wie man sieht, sind auch bei ausschliesslicher Berücksichtigung des Schädelbaues durchaus keine zwingenden Gründe vorhanden, die Familien in der von Boulen- ger proponirten Ordnung auf einander folgen zu lassen, im Gegenteil auch die osteologischen Merkmale sprechen entschieden gegen diese Reihenfolge, denn es kann doch kein Zweifel unterliegen, dass es z. B. viel natürlicher und richtiger gewesen wäre, wenn Boulen- ger die Familie der Amphibanaiden an's Ende seiner 3. Gruppe, hinter die Dibamiden gestellt hätte, mit denen sie im Schädelbau nicht bloss durch die Abwesenheit der Com- mella cranii, sondern auch durch den Mangel des knöchernen Septum interorbitale übereinstimmt. Diese Reihenfolge, bei welcher die heterogensten Formen einander genähert und die verwandtesten von einander getrennt werden, ist somit durchaus unnatürlich und muss unbedingt durch eine andere ersetzt werden, in welcher die einzelnen Familien nach den im Schädelbau ausgesprochenen Verwandtschaften gruppiert sind; wenn man nun dabei von der in systematischer Beziehung ganz unwesentlichen Form des Schlüsselbeines absieht und statt der Bekleidung die Form der Zunge in Betracht zieht, so lässt sich die von Boulen- ger aufgestellte recht complicirte Eintheilung mit dem bisher geltenden, ungleich einfacheren Eidechsenystem ganz ohne allen Zwang in Einklang bringen.

Was nun das bisher geltende Eidechsenystem anbetrifft, so ist im Laufe der Jahre, dank den Arbeiten der älteren Herpetologen, besonders M. C. Duméril, Wiegmann's, Bibrion's die Ordnung der Saurier in eine Anzahl natürlicher, meist schon auf den ersten Blick erkennbarer Gruppen eingetheilt worden, die zwar von den verschiedenen Autoren nicht immer in der gleichen Umgrenzung aufgefasst, im Grossen und Ganzen aber doch adoptirt worden sind. Diese Eintheilung, die ursprünglich in Wiegmann's Herpetologia mexicana und in der Erpétologie générale proponirt worden ist, aber nachträglich maucherlei Abänderungen und Verbesserungen erfahren hat, ist zwar später in ihrem ganzen Umfange nirgends eines Genaner dargelegt worden, dennoch war die Mehrzahl der Herpetologen,
Dr. A. Strauch,

Die so überraschende Familie der Geckoniden theilt Boulenger in 3 besondere Familien, Geckonidae, Eublepharidae und Uroplatidae, die ausgeschliesslich auf osteologische, z. Th. nur an skeletirten Exemplaren sichtbare Merkmale begründet sind. Die Geckoniden (im Sinne Boulenger's) besitzen am proximalen Ende ölsenförmig erweiterte Schlüsselbeine, amphicoele Wirbel und paarige Scheitelbeine, die Eublephariden gleichfalls ölsenförmig erweiterte Schlüsselbeine, aber prococoe Wirbel und ein unpaares Scheitelbein. und die Uroplatiden stimmen in der Form der Wirbel und in der Zahl der Scheitelbeine mit den Geckoniden überein, haben aber einfache, am proximalen Ende nicht erweiterte Schlüsselbeine und ein einfaches Nasenbein. Was zunächst die Eublephariden anbetrifft, so ist das einfache Parietale schwerlich von grosser Bedeutung, da dieser Knochen bei ihnen in der Jugend ohne Zweifel gleichfalls paarig sein und erst später durch Verwachsen einfach werden wird, dagegen verdienen die prococoe Wirbel allerdings volle Berücksichtigung und würden auch ein gutes Unterscheidungsmerkmal abgeben, wenn mit Bestimmtheit festgestellt wäre, dass alle von Boulenger zu den Geckoniden gerechneten Formen auch wirklich amphicoee Wirbel besitzen. Das steht aber noch keineswegs fest, denn wenn es auch kann einem Zweifel unterliegen kann, dass bei allen typischen Geckoniden die Wirbel amphicoee sind, so fragt es sich immerhin noch, ob die aberranten Formen, wie namentlich Nephurus, Chondrodactylus, Rhynchocéphalus und Tersalosceinos nicht am Ende auch in der Form der Wirbel abweichen, denn untersucht ist keine dieser Formen auf den fraglichen Punkt und so lange der directe Beweis dafür noch aussteht, wird es immerhin erlaubt sein, die Form der Wirbel in Frage zu stellen, zumal die Eublephariden in ihrer äusseren Erscheinung ungleich weniger von den Geckoniden abweichen, als z. B. dieGattungen Nephurus und Tersalosceinos. Freilich giebt es noch ein zweites Merkmal, durch welches sich die Eublephariden von den Geckoniden unterscheiden, nämlich die klappenförmigen Augenlider, nur muss, wenn man dieses Merkmal in
den Vordergrund stellen will, die Gattung *Aelurosaurus*, deren Namen Boulenger später ¹) in *Aelurascaletabotes* verändert hat, aus der Familie der Geckoniden entfernt und in diejenige der Eublephariden gestellt werden, weil bei den dazugehörigen Arten, wie Boulenger selbst angiebt, die «eyelids well developed, connivent» sind. Da ausserdem die Gattung *Aelurascaletabotes* auch in der Beschaffenheit der Krallen vollkommen mit der *Eublephariden*-Gattung *Coleonyx* übereinstimmt, indem bei beiden die Krallen in eine aus 2 grossen Schuppen gebildete, von oben her durch eine dritte schmale Schuppe gedeckte Scheide zurückgezogen werden können, so zweifle ich auch keinen Augenblick daran, dass sie wirklich zu den *Eublephariden* gehört, und bin fest überzeugt, dass, wenn es erst einmal möglich sein wird, ein Skelet von *Aelurascaletabotes* zu untersuchen, die Wirbel sich gleichfalls als procoel erweisen werden.

Nimmt man nun an, dass die Form der Wirbel stets mit der Beschaffenheit der Augenlider Hand in Hand geht, was nach den bisherigen Erfahrungen mehr als wahrscheinlich ist, so lassen sich die Geckoniden und Eublephariden durch diese beiden Merkmale sehr gut und sicher von einander unterscheiden, dennoch glaube ich nicht, dass man sie als selbstständige Familien gelten lassen kann, da sonst die Gleichwertigkeit der Familien überhaupt gestört wird. Die Eublephariden stimmen nämlich sowohl im Habitus, als auch in der Beschaffenheit der Hautbedeckungen und in der Bildung der Zehen so vollkommen mit den Geckoniden überein, dass man sie, genau genommen, nur für aberrante Geckoniden ansehen kann, und demzufolge halte ich es für richtiger, beide genannten Gruppen als besondere Tribus einer einzigen Familie, Geckonida, aufzufassen. Während Boulenger's Familie der Eublephariden, wenn auch nicht als Familie, so doch als besondere Tribus aufrecht erhalten werden kann, muss die Familie der Uroplattiden einfach eingezogen und mit der Familie der Geckoniden vereinigt werden. Diese neue Familie enthält nur die eine Gattung *Uroplatus*, die bekanntlich auf den sonderbaren *Gecko funabritus* Schneider, aus Madagascar begründet ist und desshalb aus der Familie Geckonida entfernt wird, weil bei der genannten Art, — die beiden anderen Arten sind auf das Skelet noch gar nicht untersucht, — das Schlüsselbein am proximalen Ende nicht erweitert und das Nasenbein einfach ist. Das einfache Nasale hat eben so wenig systematischen Werth, wie das einfache Parietale der Eublephariden, hier, wie dort, wird der betreffende Knochen bei jüngeren Individuen sicherlich paarig sein, und es bleibt also nur die nichtverstärkte Clavicula übrig, die allein genügen soll, einen Saurier zum Typus einer besonderen Familie zu erheben, der in seiner ganzen übrigen Organisation ein Geckonide und dabei der Gattung *Phyodactylus* so nahe verwandt ist, dass ein grosser Theil der Autoren ihn einfach als Art dieser Gattung aufgefasst hat. Will man auf diese Weise jeder auch noch so geringen Eigenthümlichkeit im Knochenbau gleich den Werth eines Familienmerkmals beilegen, so müsste man consequenter Weise z. B. auch die Gattung *Draco*

aus der Familie der Agamiden auszondernd und zum Typus einer besonderen Familie erheben, da bei den Arten dieser Gattung bekanntlich die 6 vorderen Paare der falschen Rippen verlängert sind und als Stützen einer besonderen Flughaut dienen; ja dieses letztere Verfahren liess sich sogar noch leichter motiviren, denn die verlängerten Rippen haben eine bestimmte physiologische Bedeutung, sie stützen und enthalten die Flughaut, welche ihrerseits wieder auf die Lebensweise der Draconen inuiniert, während das Schlüsselbein wohl immer dieselbe Funktion haben dürfte, mag es nun am proximalen Ende obensformig erweitert sein oder nicht. Ich glaube daher, dass Boulenber der Form der Clavicula eine in systematischer Beziehung viel zu grosse Bedeutung beilegt, denn daraus, dass der Sternalapparat bei den Batrachern ein vortreffliches Eintheilungsmerkmal abgiebt, folgt noch keineswegs, dass dieser Apparat auch bei den Sauriern derselben Werth haben muss, im Gegentheil mir scheint gerade die Gattung Uroplatus den besten Beweis dafür zu liefern, dass die Form der Clavicula bei den Eidechsen gar keinen systematischen Werth hat, da einander so nahe verwandte Formen, wie die Genera Ptyodactylus und Uroplatus, in dieser Beziehung differiren, ganz abgesehen davon, dass es überhaupt schon misslich ist, bei Eintheilung einer Thiergruppe ein Organ zum hauptsächlichsten Unterscheidungsmerkmal zu erheben, welches, wie es hier der Fall ist, einem nicht unbeträchtlichen Theile dieser Gruppe gänzlich fehlt.

Die Familie der Chalcididen ferner, über deren Umgrenzung die Ansichten der verschiedenen Autoren von jeher am meisten auseinandergegangen sind, theilt Boulenberg in vier Familien Zonuridae, Anguidae, Xantusiidae und Gerrhosauridae, von denen die zweite aber sehr heterogene Elemente enthält und aus einer Vereinigung der Gattungen Gerrhonotus und Ophisaurus (mit Einschluss der Genera Pseudopus, Dopasia und Hyalosaurus) mit den sogenannten diploglossen Scinciden entstanden is. Die Gründe, welche Boulenberg bewogen haben, so verschiedenartige Formen, wie z. B. den bekannten Sholtopusik (Pseudopus Pallasi) und die gemeine Blindschleiche (Anguis fragilis) in ein und dieselbe Familie zu vereinigen, sind theils im Schädelbau, theils und hauptsächlich aber in der Beschaffenheit der Zunge zu suchen. Der Schädel dieser Thiere besitzt die beiden Knochenbrücken und eine knöchern überdachte Fossa supratemporalis und die Zunge zeigt in ihrem grösseren basalen Theile fadenförmige Papillen, während ihre schwach ausgerundete Spitze mit kleinen flachen Schüppchen bekleidet ist, wobei ausserdem noch diese beiden Theile der Zunge durch eine mehr oder weniger deutlich ausgebilde Querfalte geschieden erscheinen. So vollkommen nun diese von Boulenberg unter dem Namen Anguidae vereinigten Formen im Bau des Schädels und der Zunge mit einander übereinstimmen, ebensosehr differiren sie in der Beschaffenheit der Hautbedeckungen, denn während bei denGattungen Gerrhonotus und Ophisaurus die Haut des Rumpfes, ehemals wie bei den Zonuriden und Gerrhosauriden, mit Querringeln von Schuppen bekleidet ist, zeigt sie bei den Diploglossiden genau dieselben imbricaten und im Quincunx angeordneten Schuppen, die für die Scinciden so charakteristisch sind. Ich glaube daher der bisher ganz allgemein adoptirten Ansicht, dass nämlich die Di-
ploglossiden zu den Scinciden gehören, beitreten zu müssen, und schlage vor, die Familie der Anguiden, die schon Boulenge selbst je nach der An- oder Abwesenheit der Seitenfalte in zwei nicht besonders benannten Abtheilungen scheidet, in zwei Gruppen, Gerllonotiden mit einer Seitenfalte und Diploglossida ohne Seitenfalte, zu theilen und die letzteren zu den Scinciden zu stellen. Was nun die vier Familien anbetritt, in welche Boulenge die Chalcidiiden eintheilt, so stimmen dieselben im Bau des Schädel's, der die beiden Knochenbrücken und das Knochendach über der Fossa supratemporalis besitzt, vollkommen überein und unterscheiden sich von einander hauptsächlich durch die Bekleidung der Zungenoberfläche: die Zonuriden haben eine durchweg mit zottenförmigen Papillen bekleidete Zunge, bei den Gerrhonotiden (Boulenge's Anguiden mit Seitenfalte) ist dieses Organ, wie schon bemerkt, theils mit Zotten, theils mit Schäppchen bekleidet und die Xantusiiden und Gerrhosauriden endlich besitzen eine Zunge, die an der Spitze schuppenförmige Papillen, an der Basis dagegen schräge, gegen die Mittellinie convergirende, einander mehr oder weniger deckende Falten zeigt. Die Bekleidung der Zunge ist also allerdings recht verschieden, die Form dieses Organs dagegen bei allen nahezu dieselbe, denn alle haben eine kurze, wenig protrac tile und an der Spitze schwach ausgerandete Zunge; zieht man nun hierzu noch in Betracht, dass auch bei allen die Schuppen des Rumpfes, sie mögen gross und schildförmig, oder klein und kornförmig sein, stets in deutliche Querringel angeordnet sind, so wird man die Ansicht der älteren Autoren, welche die Repräsentanten dieser 4 Familien unter dem Namen der Chalcidiiden oder Wirte Schleichen in eine einzige Familie vereinigt haben, nicht ganz unbegründet finden. Dass Boulenge's Zonuriden, Gerrhonotiden (Anguiden mit Seitenfalte), Xantusiiden und Gerrhosauriden zu einander eine grössere Verwandtschaft zeigen, als zu den übrigen Familien, unterliegt keinem Zweifel und daher glaube ich, dass es auch richtiger sein dürfte, sie als Tribus einer einzigen Familie aufzufassen, statt ihnen die Bedeutung selbst ständiger Familien beizulegen.

Die Familie der Scinciden endlich, deren Repräsentanten von den Engländern so treffend als «fish-scaled lizards» bezeichnet werden, ist unter allen Eidechsenfamilien bekanntlich diejenige, in welcher die grössste Mannichfaltigkeit der Formen beobachtet wird, indem hier allerlei Übergänge von der typischen vierfüssigen Eidechsenform bis zur fusslosen Schleichenform vertreten sind. Neben der mehr oder weniger gestreckten, oft geradezu schlangenförmigen Gestalt des Rumpfes sind es namentlich die Extremitäten, welche den grössten und manichfaltigsten Abänderungen unterliegen, denn wir treffen hier nicht bloss vierfüssige, zweifussige und fusslose Formen an, sondern auch die Zahl der Finger und Zehen variiert zwischen 5 und 0, und zwar in den manichfachsten Combinationen. Ebenso wie in der Körperform und in der Zahl und Ausbildung der Extremitäten variiren diese Eidechsen auch im Schädelbau und diesem letzteren Umstande hauptsächlich ist es auch zuzuschreiben, dass Boulenge sie in nicht weniger als 6 selbstständige Familien vertheilt hat. Die höchste Entwicklung im Schädelbau bieten, wie ich schon zu bemerken Gelegenheit hatte, die Diploglossiden (Boulenge's Anguidae ohne Seitenfalte) dar, indem ihr Schädel sowohl die beiden...
Knochenbrücken, als auch die knöcherne Überdachung der Fossa supratemporalis besitzt, alsdann folgen die Scinciden Boulenger’s, an deren Schädel zwar die beiden Knochenbrücken vorhanden sind, aber das Knochendach über der Fossa supratemporalis fehlt, nächst dem die Pygopodiden und Aneityripoden mit einem Schädel ohne Knochenbrücken und selbstverständlich auch ohne Knochendach, und endlich die Anielliden und Dibamiden mit ganz niedrig entwickeltem Schädel, an dem nicht bloss die Knochenbrücken, sondern auch die Co-lumella und sogar das knöcherne Interorbitalseptum fehlen, die also im Schädelbau vollkommen mit den Amphisbaeniden übereinstimmen. Trotz aller dieser Verschiedenheiten in der Körperform, in der Ausbildung der Extremitäten und im Schädelbau zeigen diese Thiere dennoch eine nicht zu läßende Verwandtschaft zu einander, die sich in der Beschaffenheit der äusseren Hautbedeckungen documentirt: die Haut aller dieser Eidechsen ist nämlich mit Schindelschuppen, d. h. mit dachziegel-förmig über einander gelagerten, nach Art der Fischschuppen im Quincunx angeordneten Schuppen, bekleidet und dabei so ausserordentlich charakteristisch, dass man diese Thiere auf den ersten Blick zu erkennen vermaga. Diese Uebereinstimmung in den äusseren Hautbedeckungen ist Boulenger natürlich auch nicht entgangen, er betrachtet sie aber als «superficial appearance», mir dagegen scheint sie in systematischer Beziehung ungleich wichtiger zu sein, als die Differenzen im Knochenbau, die am Ende doch nur in einer graduellen Verkümmerung des Schädels bestehen, und ich glaube daher, dass es viel natürlicher sein dürfte, diese von Boulenger weit auseinander gerissenen Formen, wie bisher, unter dem Namen Scincida in eine Familie zu vereinigen und den 6 Familien Boulenger’s höchstens den Werth von Tribus beizulegen.

Schliesslich bleibt noch Boulenger’s Familie Xenosauridae übrig, welche bekanntlich auf eine einzige Art, den zuerst von Peters im Jahre 1861 genauer beschriebenen, höchst sonderbaren Xenosaurus fasciatus aus Mexico begründet ist; diese Eidechse erinnert durch die Beschuppung der Oberseite von Kopf und Rumpf an die Geckoniden, durch diejenigen der Unterseite und des Schwanzes an die Varaniden und Helodermatiden, stimmt im Schädelbau und in der Befestigungsweise der Zähne mit den Iguaniden überrein und besitzt eine Zunge, welche der Zunge der Anguiden (Gerrhonotiden und Diploglossiden) sehr ähnlich ist, verbündet also Charaktere sehr dfferenter Familien, lässt sich aber trotzdem in keine dieser Familien ohne Zwang einreihen und muss daher als Typus einer selbstständigen Familie, Xenosauridae, aufgefasst werden, welche, wie schon Peters¹) bemerkt, das Bindeglied zwischen den Iguaniden und Helodermatiden bildet.

Nach dem im Vorstehenden Gesagten würde sich also die sehr complicirte Eintheilung Boulenger’s mit dem früheren Eidechsenystem in folgender Weise combiniren lassen:

¹) Berliner Monatsberichte 1861 p. 454.
I. Rhipiglossa.

1. Familie Chamaeleonida.

II. Pachyglossa.

2. Familie Geckonida.
 1. Tribus Geckonida s. str.
 2. » Eublepharida.

3. Familie Agamida.
 4. » Iguanida.
 5. » Xenosaurida.
 6. » Helodermatida.

III. Leptoglossa.

7. Familie Varanida.
8. » Tejida.
9. » Lacertida.
10. » Chalcida.
 1. Tribus Zonurida.
 2. » Gerrhonotida (Boulenger's Anguidae mit Seitenfalte).
 3. » Xantusiida.
 4. » Gerrhosaurida.

11. Familie Scincida.
 1. Tribus Diploglossida (Boulenger's Anguidae ohne Seitenfalte).
 2. » Scincida s. str.
 3. » Pygopodida.
 4. » Anelytropida.
 5. » Aniellida.
 6. » Dibamida.

12. Familie Amphisbaenida.

Als mir im Frühjahr 1885 der erste Band von Boulenger's Catalogue of Lizards in die Hände kam, entstand in mir natürlich der lebhafte Wunsch, das Werk nicht bloss näher
kennen zu lernen, sondern es auch auf seinen Werth und seine Brauchbarkeit an den Objec-
ten selbst zu prüfen. Zu diesem Zwecke machte ich mich im'Beginn der Sommerferien
zu einer Revision unserer Eidechsenansammlung und begann dieselbe mit der Familie der Gecko-
niden, theils weil diese Familie bei Boulenger die Reihe der Eidechsen eröffnet, theils und
hauptsächlich aber auch deshalb, weil gerade unter unseren Geckoniden eine Anzahl von
Arten, namentlich aus der Gattung Hemidactylus, vorhanden war, deren genaue Bestim-
mung mir bis dahin nicht recht hatte gelingen wollen. Die Arbeit ging so rasch vorwärts,
that sie in wenigen Wochen beendet war, und hat mir sehr viel Vergnügen bereitet, denn
ich muss gestehen, dass ich in meiner mehr als fünfundzwanzigjährigen Praxis kaum jemals
ein Buch mit solcher Befriedigung benutzt habe, wie diesen Boulenger'schen Catalog. Die
Revision ergab das Resultat, dass wir im Ganzen 122 verschiedene Arten von Geckoniden
in 637 Exemplaren 1) besitzen, welche letzteren in 456 Gläser auseinandergelegt und unter
ebenso vielen Nummern in den Generalcatalog der Reptiliensammlung eingetragen sind.
Unter diesen 122 Arten fanden sich nicht weniger als 13 ganz neue, so wie eine, die zwar
bereits vor mehr als 50 Jahren von Wiegmann unter dem Namen Gymnodactylus Eversmanni
kurz charakterisirt, aber später gänzlich in Vergessenheit gerathen war; diese letztgenannte
Art liess sich in keiner der von Boulenger adoptirten Gattungen einreihen, so dass ich sie
tum Typus einer neuen Gattung, Ptenodactylus, erheben musste, und aus dem gleichen Grunde
habe ich auch für eine der ganz neuen Arten ein neues Genus, Cnemaspis, creiren müssen.
Aber auch unter den bereits bekannten Arten fanden sich hin und wieder Exemplare, die
nicht ganz mit den vorhandenen Beschreibungen übereinstimmten, und da ich glaubte, dass
eine kurze Besprechung solcher Exemplare für die genaue Kenntnnis der betreffenden Ar-
ten nicht überflüssig sein würde, so entschloss ich mich statt einer einfachen Beschreibung
der neuen Arten, einen Catalog raisonné unserer ganzen Geckoniden-Sammlung zu ver-
öffentlichen. Diese Sammlung ist zwar nicht gerade besonders reich, gehört aber immerhin
zu den bedeutenderen und daher dürfte ein Catalog derselben auch nicht ganz ohne In-
teresse sein.

Bevor ich aber an die Aufzählung der in der academischen Sammlung vorhandenen Geckoni-
den-Arten gehe, möchte ich mir noch einige Bemerkungen über die von Boulenger
adoptirten Gattungen, so wie namentlich auch über die Reihenfolge, in welcher er diese
Gattungen aufführt, erlauben und brauche wohl nicht erst zu bemerken, dass ich unter dem
Name Geckonula nicht blass die gleichnamige Familie Boulenger's, sondern auch seine
Familien Eublepharidæ und Uropatidæ zusammenfasse.

Was zunächst die Gattungen anbetrifft, so ist es kein geringes Verdienst Boulenger's,
dass er die übergrosse Zahl derselben auf das gehörige Maass reducirt hat, nur glaube ich,

1) Da ich die Zahl der Exemplare in ein und demselben
Glase hochstens mit 6 notirt habe, in einzelnen Gläsern
aber weit mehr Exemplare enthalten sind, so ist die Ge-
sammtzahl der Exemplare in Wirklichkeit grösser, als
sie hier angegeben ist. Um solche Gläser mit mehr als
6 Exemplaren anzuziehen, habe ich sowohl im Gener-
catalog, als auch in dieser Arbeit hinter die Zahl 6 ein
+- gestellt.
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

dass er dabei in zwei Fällen etwas zu weit gegangen ist und Genera vereinigt hat, die consequenter Weise hätten getrennt bleiben müssen. So zieht er die Gattung Peripia ein und vereinigt sie mit der Gattung Gehyra, obwohl bei den Arten der ersteren die Hypodactylschilder geteilt und zweizeilig, bei denjen der letzteren dagegen ganz, d. h. ungeteilt, und einzeln angeordnet sind. Hier wird also der Beschaffenheit der Hypodactylschilder nicht der Werth eines generischen Merkmals beigelegt, während es doch sonst immer geschieht, denn wodurch anders unterscheiden sich z. B. die beiden von Boulenger adoptirten Genera Phyllopus und Hemidactylus von einander, wenn nicht dadurch, dass bei der einzigen Art des ersteren die Hypodactylschilder einfach und einzeln, bei den Arten von Hemidactylus dagegen geteilt und zweizeilig sind. Genügt die Differenz in der Beschaffenheit der fraglichen Schilder in dem einen Falle zur Aufstellung zweier selbstständiger Genera, so erfordert es die Consequenz, dass ihr auch in dem anderen Falle der gleiche Werth vindicirt werde, und deshalb glaube ich, dass die Gattung Peripia wieder restituirt werden muss, um so mehr, als Boulenger bei seinem Verfahren doch genotheit ist, seine Gattung Gehyra in zwei Gruppen, mit doppelten und einfachen Hypodactylschildern, zu trennen. Ganz ähnlich verhält es sich auch mit den Gattungen Bunopus und Alsophylax, die Boulenger unter dem letzteren Namen zusammengezogen hat; denn bei Bunopus sind die Querlamellen an der Unterseite der Finger und Zehen mit sehr deutlichen Tuberkeln versehen und erscheinen am Vorderrande geähnelt, bei Alsophylax dagegen sind sie sowohl auf der Fläche, als auch am Rande durchaus glatt; diese beiden Gattungen unterscheiden sich von einander also genau durch dasselbe Merkmal, wie die Genera Stenodactylus und Trienus, und da Boulenger diese letzteren adoptirt hat, so müssen consequenter Weise auch Bunopus und Alsophylax als gesonderte Gattungen aufgefasst werden.

In Betreff der Reihenfolge, in welcher Boulenger die Gattungen aufführt, muss ich bemerken, dass mir dieselbe eine ganz willkürliche zu sein und den in der Zehenbildung ausgesprochenen Verwandtschaften der einzelnen Formen nicht in allen Fällen genügende Rechnung zu tragen scheint. Schon der Umstand, dass er die Reihe der Gattungen in seiner Familie Geckonidae mit den aberranten Formen beginnt, dürfte kaum zu rechtfertigen sein, da es doch einmal angenommen und auch ganz natürlich ist, die typischen Formen voran zu stellen und die aberranten erst am Schlusse folgen zu lassen. Es fragt sich nun, welche Formen als die typischen anzusehen sind und da gibt, wie ich glaube, die Zehenbildung den nöthigen Aufschluss. Bekanntlich zeichnen sich die Geckoniden durch eine grosse Mannichfaltigkeit in der Form und Bekleidung der Finger und Zehen aus und lassen sich hierarch in zwei grosse Gruppen eintheilen, nämlich in Arten mit erweiterten Fingern und Zehen und in solche, bei denen diese Organe einfach, d. h. nicht erweitert sind. Unter den ersteren gibt es wiederum Formen, bei welchen die Finger und Zehen in ihrer ganzen Länge erweitert sind und solche, bei welchen sich die Erweiterung nur auf einen Theil der genannten Organe beschränkt, und zwar ist es bald die Basis, bald die Spitze, welche die Erweiterung zeigt. Die am meisten typischen Geckonen würden hiernach also diejenigen sein, bei welchen
Die Finger und Zehen in ihrer ganzen Länge erweitert sind, und mit ihnen müsste auch die Reihe beginnen; diesen würden sich dann die Formen anschliessen, bei welchen die Finger und Zehen nur teilweise erweitert sind, und zwar zuerst diejenigen, bei welchen der grössere Theil der genannten Organe erweitert ist, also die Formen mit an der Basis erweiterten Fingern und Zehen, da bei diesen nur das Endglied an der Erweiterung nicht Theil nimmt. darauf müssten die Formen folgen, bei denen sich die Erweiterung auf das Endglied der Finger und Zehen beschränkt, und endlich diejenigen mit einfachen, nicht erweiterten Fingern und Zehen, an welche sich schliesslich die aberranten Formen anreißen müssten. Diese durchaus natürliche und auch bereits von Duméril und Bibron adoptirte Reihenfolge hat Bou- lenger verworfen und seine Familie Geckoideae, wie aus der Bestimmungstabelle der Gattungen zu ersicht ist, in 11 besondere Gruppen eingetheilt. Die 3 ersten dieser Gruppen enthalten die aberranten Formen, so wie diejenigen, bei welchen die Finger und Zehen gar nicht erweitert sind, die beiden folgenden den grössen Teil der Arten mit an der Spitze erweiterten Fingern und Zehen, in die 6. Gruppe stellt er Arten mit der ganzen Länge nach erweiterten Fingern und Zehen, in die 7. dagegen diejenigen, bei welchen die genannten Organe nur an der Basis erweitert sind, die 8. und 9. Gruppe enthalten wiederum Arten mit vollständig erweiterten Fingern und Zehen, in der 10. vereinigt er Formen mit sehr verschiedenartiger Zehenbildung, die mit einander aber darin übereinstimmen, dass ihnen durchweg die Krallen fehlen, und die 11. Gruppe endlich enthält wiederum Arten mit an der Spitze erweiterten Fingern und Zehen, bei denen aber die Krallen in eine sich seitwärts öffnende Scheide zurückgezogen werden können. Diese Anordnung ist nun nicht bloss un- natürlich, da dabei einander sehr nahe verwandte Arten weit auseinandergerissen werden, sondern hat auch noch den grossen Nachtheil, dass sie die Determination der Gattungen unnützer Weise erschwert, indem man beim Bestimmen immer alle 11 Gruppen consultiren muss, was bei einer dichotomisch angeordneten Tabelle natürlich wegfällt. Ich glaube daher, dass die Reihenfolge, welche die Verfasser der Erpétologie générale adoptirt haben, ungleich natürlicher ist, und habe den Versuch gemacht, eine dichotomisch angeordnete Table zur Bestimmung der Gattungen zu entwerfen, in die ich auch die 4 bei Boulenger fehlenden Genera (Peripia, Cnemaspis, Bunopus und Ptenodactylus) aufgenommen habe, und welche anzeigen wird, in welcher Reihenfolge ich die 57 gegenwärtig bekannten Geckoideen-Gattungen aufzuführen vorschlage.

Dichotomische Tabelle zur Bestimmung der Geckoideen-Gattungen.

Die Augenbider

I. rudimentär, ringförmig, oder häufiger nur das obere entwickelt (1. Tribus Geckoidea s. str.).

Die Finger und Zehen sind

A) erweitert, und zwar

1) in ihrer ganzen Länge. Die Querlamellen an ihrer Unterseite

a) sind getheilt, d. h. in 2 Reihen angeordnet. Die Krallen retractil 1. Thecadactylus.

b) sind einfach oder eiriehig: die Krallen

2) fehlen ganz. Die Pupille

3) rund ... 2. Phelsuma.

4) vertical ... 3. Pachydaactylus.

β) sind vorhanden, und zwar
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

v) nur an gewissen Fingern, resp. Zehen, nämlich
z) am 2. und 4. Finger, resp. Zehe

4) Tarentola.

2) nur theilweise, nämlich
a) an der Basis, so dass das Endglied comprimirt erscheint. Dieses comprimirte Endglied sitzt

a) an der Spitze des erweiterten Theiles, welcher an der Unterseite mit

X) einer einzigen Reihe von Lamen len bekleidet ist. Das comprimirte

Endglied ist

v) sehr kurz. Am Daumen und an der Innenzeh

z) fehlt das comprimirte Endglied und auch die Kralle. Die Extremitäten

s) mit einem sehr deutlichen Hautsaum versehen. An

den Rumpfseiten

+—— ein sehr entwickelter Hautsaum, eine Art von

+—— nur eine schmale Hautfalte 10. Luperosaurus.

s) ohne Hautsaum 11. Gecko.

z) ist das comprimirte Endglied mit der Kralle vorhanden, u.

ηη) lang und

X X) zwei Reihen von Lamen len bekleidet ist. Der Daumen und die In-

nenzeh sind

v) wohllentwickelt, aber krallenlos 15. Lepidodactylus.

ηη) ganz rudimentär. Die Papille

s) rund. Die Kralle an dem rudimentären Daumen, resp. In-

nenzeh

z) sehr klein, kaum deutlich 16. Lygodactylus.

ηη) stark und sehr deutlich 17. Microscalabotes.

s) vertical 18. Spathoscalabotes.

β) auf der Mitte des erweiterten Theiles, tritt, so zu sagen, aus demoblen

hervor. Daumen und Innenzeh

+—— rudimentär, doch trägt die letztere eine wohllentwickelte Kralle 19. Pterochirus.

+——+ wohllentwickelt. Das comprimirte Endglied

z) fehlt am Daumen und an der Innenzeh; diese letzteren

s) sind an der Unterseite ebenso mit Querlamellen versehen, wie

die übrigen Zehen und Finger. Die Lamellen

+—— durch eine Mittelfurchen getheilt 20. Peripis.

s) tragen an der Unterseite je eine runde Platte 22. Aristelliger.

z) ist an allen Fingern und Zehen vorhanden. Der erweiterte

Zehentheil an der Unterseite

v) mit einer einfachen Reihe von Querlamellen bekleidet 23. Phyllopezus.

v) mit einer doppeltliefen Reihe von Querlamellen bekleidet.

Die Oberseite des Rumpfes

+—— mit grossen, dachziegelformig gelagerten Schuppen

v) mit kleinen Schuppen und Tuberkeln bekleidet.

b) an der Spitze. Die Erweiterung an der Unterseite

2) mit Lamellen versehen, welche

+—— eine facherformige Anordnung zeigen, der nicht erweiterte Theil

der Finger und Zehen an der Unterseite

s) mit Querlamellen bekleidet 26. Pterygodon.

s) mit Schuppen bekleidet 27. Uroplatus.

+——+ einfach der Quere nach gerichtet. Diese Lamellen sind an

ihrem Hinterende

β) mit Platten versehen und zwar

X) findet sich an jeder Zehe eine einzige solche Platte 30. Sphaerodactylus.

X X) sind an jeder Zehe zwei solcher Platten vorhanden, die neben ein-

ander liegen und durch eine Längsfurche getrennt sind. Die nicht

erweiterten Glieder der Finger und Zehen sind
Dr. A. Strauch,

s) alle gleich beschaffen und an der Unterseite mit Querlamellen oder Tuberkeln versehen. Krallen
a) fehlen durchaus .. 31. Elenavia.
b) sind vorhanden. Die Querlamellen an der Unterseite der Finger und Zehen sind
\[1\] einfach und überhaupt klein. Das erweiterte Endglied der Finger und Zehen ist auf der Oberseite
\[\rightarrow\] mit grossen Schuppen bekleidet, die von denen der übrigen Glieder sehr abweichen. 32. Phyllodactylus.
\[\rightarrow\] mit kleinen Schuppen bekleidet, die denen der übrigen Glieder vollkommen gleichen. 33. Diplodactylus.
c) paarig, mit Ausnahme der hinteren, d. h. proximalen. 34. Oedura.
s) in so fern ungleich, als auf dem vorletzten Gliede der 4 ausseren Finger und Zehen sich ein Paar ehemaliger Platten befindet, wie auf dem erweiterten Endgliede 35. Calodactylus.

B) nicht erweitert oder höchstens an der Basis in so fern scheinbar erweitert, als das Basalglied gegen die stark comprimierten distalen Glieder beträchtlich absteigt. Die Unterseite der Finger und Zehen mit
1) Querlamellen bekleidet. Die distalen Glieder der Finger und Zehen
a) viel schmäler, als das Basalglied, d. h. sie mehr oder weniger stark comprimirt sind, die Klinax liegen zueinander
\[a\] drei Schildchen, einem kleinen oberen und zwei grossen infero-lateralen. 36. Heteronota.
\[b\] zwei Schildchen, einem kleinen oberen und einem sehr grossen unteren, das rinnenförmig gegeben ist. Die Innenseite der Unterschenkel
\[\rightarrow\] mit einer Langserihe grosser, in die Querlamelle bekleidet .. 37. Cynaspis.
\[\rightarrow\] mit einer Langserihe grosser, in die Querlamelle bekleidet .. 37. Cynaspis.
\[\rightarrow\] wie gewöhnlich beschnuppt. Die Pupille ist
\[\eta\] rund. Der Schwanz ist
\[\eta\] sehr deutlich comprimirt mit scharfer Oberkante............. 39. Printuris.
\[\epsilon\] vertikal. Der Schwanz
\[X\) von gewöhnlicher Form, conisch und sehr fragil 40. Gynanodactylus.
\[X\) von der Basis an sehr dünn und nicht fragil 41. Agamuran
b) ebenso breit, wie das Basalglied n. nicht comprimirt. Die Zehen an den Seiten
\[a\] ganzrandig, d. h. nicht getrennt; ebenso auch die Finger. Die Querlamellen an der Unterseite der Finger und Zehen
\[X\) glatt und am Vorderrande nicht geähnelt. Die Oberseite des Rumpfes
\[a\) mit durchziehendförmig gelegenen Schuppen bekleidet 42. Hemonota.
\[a\) mit Kronschuppen und Tuberkeln bekleidet 43. Abaphylax.
\[X\) mit deutlich vorspringenden Tuberkeln bekleidet und am Vorderrande geähnelt 44. Bunopus.
\[\beta\) mit deutlichen Franzen versehen. Die Finger an den Seiten
\[\rightarrow\) gleichfalls mit deutlichen Franzen versehen 45. Ptenodactylus.
\[\rightarrow\) ganzrandig, oder sehr undeutlich geämt. Die Querlamellen an der Unterseite der Finger und Zehen
\[\eta\) gekielt und am Vorderrande deutlich geähnelt 46. Stenodactylus.
\[\beta\) nicht gekielt und mit feinen, Granulationen versehen, dass sie fast glatt erscheinen, 47. Ptenopus.
2) kleinen Schuppen oder Körnchen bekleidet. Finger und Zehen an den Seiten
\[a\) geämt. Die Unterseite derselben mit
\[\eta\) kleinen, zugespitzten, immerierten Schuppen bekleidet .. 48. Ceramodactylus.
\[\beta\) mit feinen Granulationen versehen 49. Teratoscincus.
\[\epsilon\) ganzrandig, d. h. ohne Franzen. Die Haut an der Unterseite der Vorder- und Hinterfuss
\[\rightarrow\) von gewöhnlicher Beschaffenheit, d. h. nicht polsterartig aufgetrieben. Die Krallen
\[\eta\) fehlen .. 50. Coleopus.
\[\beta\) sind vorhanden .. 51. Rhynchoedura.
\[\rightarrow\) polsterartig aufgetrieben. Die Krallen
\[\eta\) fehlen .. 52. Chondrodactylus.
\[\beta\) sind vorhanden .. 53. Nephrurus.

II. wohlniswirkt, klappertformig (2. Tribus Eublepharidae). Die Unterseite der Finger u. Zehen
\[a\) granulirt .. 54. Patiodactylus.
b) mit Querlamellen besetzt. Die Krallen
1) deutlich sichtbar, nicht retrakttil ... 55. Eublepharis.
2) nicht sichtbar, sondern in einer Scheide versteckt, die aus 2 grossen breiten seitlichen und einer schmalen oberen Schuppe besteht. Die distalen Phalangen
\[a\) comprimirt .. 56. Aeluroscalabotes.
\[\beta\) nicht comprimirt, sondern genau so beschaffen, wie die basalen 57. Coleonyx.
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

Verzeichniss der im zoologischen Museum der Kaiserlichen Akademie der Wissenschaften aufgestellten Geckoniden').

1. Thecadactylus rapicauda Houitt.

324. Surinam. Dr. Krauss 1858.

2. Phelsuma Cepedianum Merr.

Die beiden Exemplare von Isle de France, so wie die drei von Madagascar stammenden, haben die für diese Art charakteristischen, (in Spiritus) gelblich rothen Zeichnungen, bei dem Stück No. 5632 dagegen sind dieselben so undeutlich, dass es auf den ersten Blick oben ganz einfarbig erscheint und nur jederseits 2 helle Längsstreifen zeigt, von denen der obere, der weniger deutlich ist, an der Schulter zu beginnen scheint und sich auch auf die vordere Schwanzhälfte ausdehnt, während der untere, der viel deutlicher und weiss gefärbt ist, unter dem Ohre beginnt und sich bis in die Leistengegend hinzieht, nur an der Insertionsstelle des Oberarmes unterbrochen.

3. Phelsuma Guentheri Boul.

6403. Mauritius. Dr. E. Riebeck* 1885.

Mémoires de l'Acad. Imp. des sciences, VIIe Série.

4. Phelsuma madagascariense Gray.

6404. Insel Nossi-bé. Dr. E. Riebeck * 1885.
6405. Insel Nossi-bé. Dr. E. Riebeck * 1885.

5. Phelsuma laticauda Boettg.

6. Phelsuma lineatum Gray.

7. Pachydactylus Bibronii Smith.

321. Fundort? Kunstkammer (2 Ex.).

Gattung Tarentola Gray.

Dr. A. Strauch,

Bestimmung nicht geeignet, bei Seite gelassen habe. Die 11 Arten unterscheiden sich von einander, wie folgt:

Das Hinterhaupt
I. einfach, ohne Querleiste. Der Vorderrand der Ohröffnung
A) ganz, d. h. nicht gezähnt. Die Dorsaltuberkeln
 1) sehr deutlich gekielt. Die polygonalen Tuberkeln auf der Oberseite des Kopfes sind
 a) stark gewölbt, aber ohne Spur eines Kieles. Die Rückentuberkeln sind
 z) gruppenweise angeordnet, indem jeder grosse Tuberkel noch von einem Kranz kleinerer umgeben ist... *facetana.*
 2) durchaus isolirt, dabei aber sehr dicht gedrängt... *neglecta.*
 b) flach, aber deutlich gekielt.... *angusticeps.*
 2) glatt oder doch nur sehr undeutlich gekielt. Der Schwanz auf der Unterseite
 a) leicht convex mit gerundetem Seitenrande. Die Rückentuberkeln bilden
 z) 12 Längsreihen. Das Mentale etwa doppelt so lang, als in der Mitte breit. Die Keilschuppen sind
 →+) viel kleiner, als diejenigen auf dem Hinterhaupte. *Delalandii.*
 →+→) fast so gross, wie diejenigen auf dem Hinterhaupte. *cphippiaeta.*
 2) 16 Längsreihen. Das Mentale ist etwa drei mal so lang, wie in der Mitte breit... *gigas.*
 b) abgeflacht mit scharfem Seitenrande... *senegalensis.*
B) gezähnt. Die Rückentuberkeln
 a) glatt und mehr oder weniger gewölbt; ihre Beschaffenheit auf dem Rumpfe ist
 1) ein verschiedene, indem sie auf der Rückenmitte linsenförmig und schwach convex, an den Flanken aber conisch zugespitzt sind... *aegyptiaca*
 2) eine durchaus gleiche und dabei stehen sie sehr dicht gedrängt... *americana.*
 b) sehr stark gekielt und in 20 Längsreihen angeordnet... *cubana.*
II. von einer erhabenen Querleiste begrenzt... *clypeata.*
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

11. Tarentola facetana Aldrov.

326. Süd-Europa. Dr. Schinz 1837.
327. Algerien. Dr. Guyon* 1862.
328. Algerien. Dr. Guyon* 1862.
330. Umgegend der Stadt Alger. Dr. Strauch* 1861.
331. Umgegend der Stadt Alger. Dr. Strauch* 1861.
332. Umgegend der Stadt Alger. Dr. Strauch* 1861. (4 Ex.)
333. Umgegend der Stadt Alger. Dr. Strauch* 1861. (4 Ex.)
334. Umgegend der Stadt Alger. Dr. Strauch* 1861.
335. Umgegend der Stadt Alger. Dr. Strauch* 1861.
336. Umgegend der Stadt Alger. Dr. Strauch* 1861.
337. Griechenland. Dr. Bartels* 1830.
339. Sicilien. Dr. Strauch* 1861.
3395. Nizza. Dr. Strauch* 1872.
5467. Castellamare. Hr. N. Tulinow* 1879. (2 Ex.)
5875. Constantine. Dr. Staudinger 1882.
6034. Nizza. Dr. J. von Bedriaga 1883. (2 Ex.)

12. Tarentola neglecta n. sp. Fig. 3 u. 4.

Diese Art ist im Habitus der *Tarentola Delalandii* D. et B. sehr ähnlich, unterscheidet sich von derselben aber durch die deutlich gekielten, z. Th. sogar tiredrischen Rückentuberkeln, die sehr dicht gedrängt stehen und in der Mitte des Rückens 14 reguläre Längsreihen bilden. Ferner sind bei ihr die Submentalschilder genau so angeordnet, wie bei *Tarentola ephippiata* O'Shangh., von welcher letzteren sie aber sowohl durch den Habitus, als auch durch die gekielten Rückentuberkeln und namentlich durch die kleinen Gularschuppen, die kleiner sind, als diejenigen auf dem Occiput, leicht unterschieden werden kann.

Die Schnauze ist so lang, wie der Zwischenraum zwischen der Ohröffnung und der Orbita. Das Rostrale ist etwa doppelt so breit, wie hoch; jederseits 9 Supralabialia, von denen die letzten sehr klein sind. Das Mentale etwa doppelt so lang, wie in der Mitte breit, und am Hinterrande nicht halb so breit, wie am vorderen. 9—10 Infrahlabialia jederseits. Die Submentalia jederseits in der Zahl 3 vorhanden, von denen das innerste lang ist und mit dem 1. Infrahlabiale in Kontakt steht, während die beiden äussern viel kleiner erscheinen und durch eine Reihe noch kleinerer Schildchen von den Infrahlabialen getrennt sind.

Maassee. Totallänge 95 Mm.; Länge des Kopfes 13 Mm., des Rumpfes 30 Mm., des Schwanzes 52 Mm.

Das eben beschriebene Exemplar und dasjenige der nächstfolgenden Art habe ich von Hrn. Deyrolle in Paris als aus der Gegend von Batna in der Algérie stammend gekauft, kann also für die Richtigkeit der Fundortsangabe nicht einstehen, habe aber auch keinen Grund an derselben zu zweifeln, da die übrigen Reptilien, die ich zugleich kaufte, nur solchen Arten angehörten, welche in der Algérie einheimisch sind.

13. Tarentola angusticeps n. sp. Fig. 1 u. 2.

Während alle bisher bekannten Arten dieser Gattung sich durch einen verhältnissmässig grossen und namentlich in der Temporalgegend sehr breiten, so zu sagen, aufgetriebenen Kopf auszeichnen, besitzt diese Art einen eher kleinen und an den Schläfen durchaus nicht aufgetriebenen Kopf. Am nächsten ist sie der Tarentola neglecta verwandt, mit welcher sie sowohl in der Anordnung und Beschaffenheit der Dorsaltuberkeln, als auch der Submentalschilder übereinstimmt, lässt sich aber sehr leicht von ihr unterscheiden, und zwar nicht bloss durch den völlig anders geformten Kopf, sondern namentlich auch durch die Kopfschuppen, die bei ihr sämtlich auffallend flach und zugleich sehr deutlich gekielt sind.

Die Schwanze ist ziemlich breit, stumpf zugerundet und so lang, wie der Zwischenraum

Die Grundfarbe ist ein schmutziges Weislichgelb, auf der Unterseite, wie gewöhnlich, einfarbig, ohne alle Zeichnungen. Auf der Oberseite des Kopfes findet sich jederseits eine schmale bräunliche Temporalbinde, die sich auch auf den vorderen Theil des Rumpfes fortsetzt, und noch mehrere gleichfalls bräunliche Längslinien, die theils auf der Schranze, theils auf dem Interorbitalspatium, theils auf dem Hinterhaupte liegen. Rumpf und Schwanz sind sehr undeutlich der Quere nach hellbräunlich gebändert, jedoch sind diese Querbinden nur auf dem Schwanz einzelgmassen deutlich, während auf dem Rumpfe nur bei bestimmter Beleuchtung leise Spuren derselben zu sehen sind.

Maasse. Totallänge 80 Mm.; Länge des Kopfes 11 Mm., des Rumpfes 28 Mm., des Schwanzes 41 Mm.

4202. Fundort? Kaiserl. Botanischer Garten* 1851.(3 Ex.)

15. Tarentola aegyptica Cuv.

340. Aegypten. Dr. Clot-Bey* 1842.
341. Aegypten. Dr. Clot-Bey* 1842.
342. Aegypten. Dr. Clot-Bey* 1842.
343. Aegypten. Dr. Clot-Bey* 1842.
344. Aegypten. Dr. Clot-Bey* 1843. (2 Ex.)
6305. Aegypten. Dr. Clot-Bey* 1843. (jung.)
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

5401. Insel Mahé. Hr. S. Braconier 1879.

17. Ptychozoon homalocephalum Creveldt.

4496. Insel Engano. Dr. Winkel* 1876.
4535. Westküste von Sumatra. Dr. Winkel* 1876.

18. Gecko verticillatus Laur.

345. Philippinen. Dr. Mertens 1829. (3 Ex.)
2641. Fundort? Hr. Umlauf 1870. (jug.)
1789. Ost-Indien. Hr. Il. Schilling 1877. (2 Ex. jug.)
5745. Kedong Djati (Java). Dr. Winkel* 1881.
5746. Kedong Djati (Java). Dr. Winkel* 1881.
5976. Soerabaya (Java). Dr. Fischer* 1883.
6406. Java. Dr. E. Riebeck* 1885. (2 Ex.)
6407. Java. Dr. E. Riebeck* 1885.

4493. Amboina. Dr. Winkel* 1876.
4732. Neu Guinea. Hr. G. Frank 1877. (2 Ex.)

Memoires de l'Acad. Imp. des sciences, Ville de Séres.

Peters und Marquis Doria haben diese Art bekanntlich für eine blosse Varietät des *Gecko vittatus* Houtt. erklärt und werden dazu sicherlich hinreichende Gründe gehabt haben, dennoch glaube ich, dass man beide Arten auseinanderhalten muss, da die so überaus charakteristische Zeichnung des *Gecko vittatus* Houtt. bekanntlich ausserordentlich constant und zugleich völlig verschieden ist von der zwar variabeln, aber bis zu einem gewissen Grade dennoch constanten Zeichnung des *Gecko bivittatus* D. et B.

Gecko japonicus Bouleneger. Catal. I, p. 188.
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

6304. China. Dr. K. Kessler 1880. (2 Ex.)

23. Rhacodactylus auriculatus Bavay.

24. Rhacodactylus ciliatus Guichen.

An unserem, sonst sehr schön erhaltenen Exemplar fehlt leider der so seltsam geformte Schwanz und es besitzt statt dessen nur eine conische Warze von einigen Mm. Länge; überhaupt muss dieses Organ ausserordentlich leicht abbrechen, denn Bavay hat unter 8 Exemplaren, die er in Händen gehabt, nur ein einziges mit intactem Schwanz gefunden.

25. Hoplodactylus maculatus Boul.

27. Lepidodactylus aurantiacus Bedd.

3870. Gesellschafts-Inseln. Museum Godeffroy 1874. (2 Ex.)
5685. Ternate. Dr. Fischer 1880. (2 Ex.)
6421. Neu Britanniën. Dr. E. Riebeck 1885.
6427. Tarowa (Gilberts-Inseln). Dr. E. Riebeck 1885. (5 Ex.)
6428. Jaluț (Marschalls-Inseln). Dr. E. Riebeck 1885. (3 Ex.)
6429. Jaluț (Marschalls-Inseln). Dr. E. Riebeck 1885. (3 Ex.)
29. Lepidodactylus cyclurus Günther.

30. Lygodactylus capensis Smith.

31. Lygodactylus picturatus Pters.

6975. Witn. Linnaea 1886. (3 Ex.)

32. Peripia mutilata Wiegm.

612. Cuba. Dr. Strauch *1861.
4471. Java. Dr. Winkel *1876. (Ex. mit 3 Schwänzen.)
5867. Ternate. Dr. Fischer *1880.
6673. Salanga. Linnaea 1885. (2 Ex.)
6856. Saigon. Mag. J. Poljakow 1885. (2 Ex.)
7126. Neweça Ellia (Ceylon). Hr. G. Schneider. (3 Ex.)

33. Peripia variegata Dum. et Bibr.

6069. Sud-Australien. Hr. G. Schneider 1883. (2 Ex.)
6409. Sud-Australien. Dr. E. Riebeck *1886.
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W. 29

34. Gehyra oceanica Lesson.

608. Viti-Lewu. Museum Godéfroy 1868.
609. Cuba. Dr. Strauch* 1861.
610. Cuba. Dr. Strauch* 1861.
611. Cuba. Dr. Strauch* 1861.
6422. Neu Britannien. Dr. E. Riebeck* 1885.
6423. Neu Britannien. Dr. E. Riebeck* 1885.
6430. Jaluit (Marschalls-Inseln). Dr. E. Riebeck* 1885.

35. Gehyra vorax Girard.

5653. Insel Vaté (N. Hebriden). British Museum 1880.
5654. Insel Vaté (N. Hebriden). British Museum 1880.
5655. Insel Vaté (N. Hebriden). British Museum 1880.

36. Gehyra Fischer n. sp. Fig. 5 u. 6.

5688. Ternate. Dr. Fischer* 1880.

Die Färbung der Oberseite aller Theile ist chocolatebraun mit dunkleren Vermiculationen, die auf dem Rumpfe und den Extremitäten deutlicher sind, als auf dem Kopfe; die Unterseite ist schmutzig weiss und zeigt auf Hals und Kehle einen ausgesprochen bräunlichen Ton.

Maasse. Totalänge? Länge des Kopfes 18 Mm.; des Rumpfes 45 Mm.; des Schwanzes?

Ich habe mir erlaubt, diese Art zu Ehren des Herrn Dr. Fischer, Gesundheits-Officiers 1ter Classe auf Ternate (später in Soerabaya auf Java), zu benennen, der unserem Museum eine überaus reiche Collection zoologischer Objecte von Ternate und Neu Guinea zum Geschenk gemacht hat.
37. Hemidactylus frenatus Dum. et Bibr.

Hemidactylus frenatus Boulenger. Catal. I, p. 120.

- 3399. Pioquinto (Corea). Dr. L. v. Schrenck 1855.
- 5686. Ternate. Dr. Fischer 1880. (2 Ex.)

38. Hemidactylus mabouia Morcan.

- 6042. Nossi-Bé. Hr. G. Schneider 1883. (2 Ex.)

40. Hemidactylus Bocagii Boul.

41. **Hemidactylus turcicus** L.

2821. Insel Syra. Hr. J. Erber 1870. (2 Ex.)
2822. Insel Syra. Hr. J. Erber 1870. (3 Ex.)
3149. Stadt Alger. Dr. Strauch* 1861.
3682. Hyères. Dr. M. Bogdanow* 1873.
4826. Koseir. Dr. C. B. Klunzinger 1878.
6672. Creta. Linnaca 1885. (2 Ex.)
6983. Insel Sardinien. Linnaca 1886.

Das Exemplar № 4826, das nicht besonders gut erhalten ist, weicht zwar durch die sehr schwach triebtrischen Tuberkeln und die im Ganzen etwas kürzeren Zehen von den übrigen ab, demnoch kann es nicht zu *Hemidactylus sinaitus* Boul. gezogen werden, weil das Rostralschild an der Begrenzung des Nasenlochs Theil nimmt.

42. **Hemidactylus Brookii** Gray.

6968. Sklavenküste. Linnaca 1886. (2 Ex.)
6969. Sklavenküste. Linnaca 1886. (2 Ex.)

43. **Hemidactylus Gleadowii** Murray.

615. Fundort? Hr. Dupont. (2 Ex.)
6392. Ceylon. Dr. E. Riebeck* 1885.
6395. Ceylon. Dr. E. Riebeck* 1885.
7125. Newera Ellia (Ceylon). Hr. G. Schneider 1886. (2 Ex.)

44. **Hemidactylus maculatus** Gray.

45. Hemidactylus triedrus Daud.

613. Fundort? Dr. Mertens 1829.
6394. Ceylon. Dr. E. Riebeck* 1885.

46. Hemidactylus depressus Gray.

47. Hemidactylus Leschenaultii Dum. et Bibr.

6393. Ceylon. Dr. E. Riebeck* 1885.

4181. Hardwar. Wiener Museum 1876. (2 Ex.)
4185. Calcutta. Wiener Museum 1876. (2 Ex.)

49. Hemidactylus flavoviridis Ruepp.

4819. Kosair. Dr. C. B. Klunzinger 1878.
4820. Kosair. Dr. C. B. Klunzinger 1878.
4821. Kosair. Dr. C. B. Klunzinger 1878.

Unsere drei Exemplare sind von Dr. Klunzinger in seinem Aufsatze «Zur Wirbeltierfauna im und am Rothen Meer unter dem Namen *Hemidactylus Coctaei* D. et B. auf-
\[\text{Mémoires de l'Acad. imp. des sciences, Villene Sér.}\]

50. Hemidactylus Bowringii Gray.

1181. Sikkim. Wiener Museum 1876.
1182. Sikkim. Wiener Museum 1876. (3 Ex.)
1776. Fundort? Hr. II. Schilling 1877.

51. Hemidactylus Garnotii Dum. et Bibr.

630. Fundort? Kunstkammer.

52. Hemidactylus platyurus Schneid.

636. Philippinen. Dr. Mertens 1829.
637. Philippinen. Dr. Mertens 1829.
3534. Celebes. Hr. Salmin 1872. (2 Ex.)
1064. Penang. Wiener Museum 1875. (4 Ex.)
6413. Penang. Dr. E. Riebeck* 1885. (2 Ex.)
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W. 35

53. Ptyodactylus gecko Hasselq.

1822. Koseir. Dr. C. B. Klunzinger 1878.
4823. Koseir. Dr. C. B. Klunzinger 1878.
4824. Koseir. Dr. C. B. Klunzinger 1878.

54. Uroplatus fimbriatus Schneid.

55. Sphaerodactylus elegans Reinh. et Lütken.

821. Port-au-Prince. Dr. Jaeger 1829. (5 Ex.)
3392. Cuba. Geber ?

56. Sphaerodactylus punctatissimus Dum. et Bibr.

699. Port-au-Prince. Dr. Jaeger 1829.
700. Port-au-Prince. Dr. Jaeger 1829. (2 Ex.)

57. Sphaerodactylus glaucus Cope.

58. Sphaerodactylus torquatus n. sp.

3263. Mazatlan. Hr. Salmin 1871. (3 Ex.)

Zunächst mit Sphaerodactylus glaucus Cope verwandt, mit dem er die kleinen, nicht gekielten Rumpfschuppen und das mässig grosse Rostralschild gemein hat, von dem er sich
aber durch den viel gestreckteren Kopf, die gestrecktere, mehr zugespitzte Schnauze und die verschiedene Färbung und namentlich Zeichnung unterscheidet.

Die Schnauze unbedeutend länger, als der Zwischenraum zwischen Ohröffnung und Orbita. Die Ohröffnung klein und ausgesprochen horizontal gestellt. Das Rostrale von mässiger Größe, genau so beschaffen, wie Boulenger es auf Tafel XVIII, Fig. 3 von *Sphaerodactylus glaucus* Cope abgebildet hat. Jederseits 6 Supralabialia, die letzten sehr klein. Das Mentale gross, bedeckt die Spitze des Unterkiefers und besitzt einen leicht bogenförmigen Hinterrand; zu jeder Seite desselben stehen 6 Infralabialia, von denen die 3 vorderen sehr gross, die 3 hinteren dagegen sehr klein sind. Zwei grosse nebeneinander liegende Submentalia und hinter desselben 3 etwas kleinere in einer Querreih; hinter diesen letzteren noch 2 oder 3 Querreihen von Schildehen, die successive an Größe ab-, an Convexität aber zunehmen und so allmählich in die Kornschuppen der Kehle übergehen. Das Augenlid hat in der Mitte seines Oberrandes einen kleinen, nach hinten gerichteten Dorn. Die Oberseite aller Theile mit kleinen flachen Schuppen bedeckt, die auf dem Hinterkopf besonders klein, kornförmig sind. Die Kehlschuppen sind, wie schon bemerkt, klein und convex, die R anchenschuppen dagegen plan, etwa doppelt so gross, wie die Rückenschuppen, und dachziegelförmig gelagert.

Die Oberseite zeigt auf hellem bräunlichgelbem Grunde braune Vermiculationen, die auf dem Köpf in der Längsachse des Thiers verlaufen, während sie auf dem Rumpf mehr der Quere nach gerichtet sind. Die Oberseite des Halses ist mit einem weissen, breit schwarz gerandeten Halsbande versehen, d. h. es finden-sich daselbst drei gleichbreite Querbinden, eine vordere schwarz, die vor der Schulter liegt, eine mittlere weisse, welche die Schulter berührt, und eine hintere schwarz, welche hinter der Schulter liegt und in die Achselöhle herabsteigt. Der Schwanz ist bei den beiden grösseren Exemplaren reproduziert und erscheint fast einfarbig bräunlich gelb, da die braunen Vermiculationen daselst nur andeutungsweise vorhanden und sehr vereinzelt sind. Bei dem kleinen Stück dagegen, dessen Schwanz viel länger und sehr dünn ausgezogen, also angenscheinlich nicht reproduziert ist, zeigt er in seinem Enddrittel ähnliche Zeichnungen, wie sie nach Boulenger bei *Sphaerodactylus glaucus* vorkommen. Die äusserste Spitze ist nämlich weiss, vor derselben findet sich ein breiter schwarzbrauner Ringel, dann folgt nach vorn ein schmaler weisser und darauf wieder ein breiterer braunschwarzer Ringel; vor diesem Ringel sieht man auf der Oberseite in gleichen Abständen noch mehrere weisse Flecken, die mehr oder weniger deutlich braun gesäumt sind und nach der Schwanzbasis zu immer undeutlicher werden. Die Unterseite aller Theile ist sehr hell bräunlichgelb.

Maasse. Totallänge 49 Mm.; Länge des Köpfes — 8 Mm.; des Rumpfes — 21 Mm.; des Schwanzes — 20 Mm. Bei dem kleinen Exemplar, dessen Schwanz, wie schon bemerkt, nicht reproduziert ist, beträgt die Länge dieses letzteren etwas mehr, als diejenige von Kopf und Rumpf zusammengenommen.
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

59. Sphaerodactylus Copei Steind.

4780. Süd-Amerika? Hr. H. Schilling 1877. (2 Ex.)

Die 3 Exemplare, von denen das aus Cuba als Sphaerodactylus notatus Baird eingeschickt war, stimmen mit der von Dr. Steinصادrscher gegebenen Beschreibung vollkommen überein, während sie von der Boulenz'schen Diagnose in so fern abweichen, als die Bauchschuppen auch nicht die geringste Spur eines Kieles zeigen.

60. Sphaerodactylus anthracinus Cope.

4781. Fundort? Hr. H. Schilling 1877. (3 Ex.)

Unsere Exemplare sind noch bunter, als das Stück im British Museum, und zeigen auf hellem bräunlichen Grunde dunkelbraune Querbinden, die mit weissen, oft und ganz unregelmässig zu Querbinden zusammenfließenden Flecken geziert sind. Solcher Binden finden sich auf dem Rumpfe im Ganzen drei, eine vor den Vorderextremitäten, eine vor oder fast über den Hinterextremitäten und die dritte genau in der Mitte zwischen den beiden genannten. Der Schwanz, dessen äusserste Spitze weiss ist, zeigt 5 oder 6 weisse, ziemlich breite Ringel, die sowohl am Vorder-, als auch am Hinterrande breit dunkelbraun gesäumt sind, und auch die Extremitäten erscheinen weiss und dunkelbraun gezeichnet, stellenweise sogar mehr oder weniger deutlich quergebändert. Der Kopf ist sehr hell gefärbt und trägt auf dem Occiput eine weisse, dunkelbraun gesäumte Makel, die an Grösse dem Auge gleichkommt; ausserdem finden sich auf dem Kopfe noch 5 weisse Längslinien, 2 vordere, deren jede vom Nasenloch zum Auge zieht, 2 hintere, einander parallele, deren jede vom Hinterrande der Orbita zum Hinterkopfe zieht und etwas kürzer ist, als jede der vorderen, und endlich eine mittlere, die auf der Schnauze entspringt und auf dem Interorbitalspatium gegen die weisse Occipitalmakel zieht, ohne sie jedoch zu erreichen. Die Schläfen sind auch mit einigen, weniger scharf begrenzten weissen Makeln geziert, die sich auch auf den Hinterkopf fortsetzen und hier in eine bogenförmige Querreihen angeordnet sind. Bei 2 Exemplaren sind die Zeichnungen auf Rumpf und Schwanz sehr deutlich ausgeprägt, bei dem dritten, dem grössten, dagegen mehr verschwommen und da das Weiß im Leben möglicherweise blau war, so könnten wohl Exemplare vorkommen, die, wie das Cope'sche Originalstück, einfach auf dunkelbraunen Grunde blau gezeichnet sind. Das Exemplar aus Cuba, Nr 7143, weicht in der Zeichnung von den anderen etwas ab, indem bei demselben das Weiß in den queren Rumpfbinden an Ausdehnung gewonnen, an Intensität aber verloren hat, so dass der Rumpf
Dr. A. Strauch,

mit 3 hellen, schwarz gerandeten Querbinden geziert ist. Ferner sind die weissen Flecken, welche bei den 3 anderen Stücke eine mehr oder weniger zusammenhängende halbmond-förmige Figur auf dem Hinterkopf bilden, hier gleichfalls zu einer hellen, schwarz gerandeten Binde zusammengelassen und endlich fehlt demselben der helle, schwarz umrandete Occipitafleck, da er mit der mittleren Längsbinde des Kopfes verschmolzen ist. Sämtliche Zeichnungen auf Rumpf und Kopf sind sehr scharf ausgeprägt, dagegen zeigt der leider zur Hälfte abgebrochene Schwanz kaum Spuren einer Querbänderung.

Unser grösstes intactes Exemplar hat eine Totalänge von nur 52 Mm.

61. Phylodactylus tuberculosus Wiegm.

2689. Mazatlan. Hr. Salmin 1870 (2 Ex.)
2690. Mazatlan. Hr. Salmin 1870 (3 Ex.)
4779. Fundort? Hr. H. Schilling 1877.

63. Phylodactylus galapagensis Peters.

Bei diesen beiden Exemplaren ist zwar die Erweiterung an den Zehenspitzen weniger stark, wie bei Phylodactylus tuberculosus Wiegm., jedoch ist die Differenz im Ganzen nicht bedeutend. Der Grund, weshalb ich dieselben zu Phylodactylus galapagensis Piers. rechne, liegt daran, dass bei ihnen die Dorsaltuberkeln jederseits von der Rückenmitte 6 sehr reguläre Längsreihen bilden und die ganze Anordnung dieser Tuberkeln sehr an diejenige von Gymnodactylus pelagicus Girard erinnert, ein Umstand, den Boulenger als für die in Rede stehende Art besonders charakteristisch hervorhebt.
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

64. Phyllodactylus pictus Peters.

Durch ein Versehen von Seiten Boulenger’s ist diese Art in seine zweite Gruppe, also unter die Arten mit gleichartiger Rückenbeschuppung gerathen, während er in der Beschreibung ganz richtig angiebt: Temples and upper surface of body, limbs and tail covered with small granular scales, intermixed with scattered, roundish, triangular, keeled tubercles etc. Sie gehört folglich in die erste Gruppe, welche durch eine «unequal lepidosis» charakterisirt ist, und zwar zu den Arten mit gekielten Dorsaltuberkeln.

65. Phyllodactylus porphyreus Dum. et Bibr.

666. Capland? Hr. Preiss 1842. (4 Ex.)

66. Phyllodactylus marmoratus Gray.

6071. Süd-Australien. Hr. G. Schneider 1883. (3 Ex.)

6432. Süd-Australien. Dr. E. Riebeck* 1885. (3 Ex.)

67. Phyllodactylus affinis Boul.

68. Phyllodactylus europaeus Géné.

4186. Insel Tinetto. Prof. Dr. Wiedersheim 1876.

6984. Insel Sardinien. Linnaea 1886. (2 Ex.)
69. Diplodactylus spinigerus Gray.

6308. Australien. Hr. Frank 1884.

70. Diplodactylus strophurus Dum. et Bibr.

6070. Süd-Australien. Hr. G. Schneider 1883. (2 Ex.)
6433. Süd-Australien. Dr. E. Riebeck 1885.

Soweit ich nach den mir vorliegenden Exemplaren urteilen kann, unterscheidet sich diese Art von dem ihr so nahe verwandten _Diplodactylus spinigerus_ Gray auch dadurch, dass bei ihr die jedersitzige Längsreihe von Dorsaltuberkeln weit hinauf auf den Nacken, fast bis an den Kopf geht, während sie bei jenem kaum bis an die Schultern reicht.

71. Diplodactylus vittatus Gray.

663. Neu Holland. Prof. Dr. Lenckart 1860.
2388. New South Wales. Dr. Paessler 1863.

72. Diplodactylus polyophthalmus Günther.

73. Oedura marmorata Gray.

74. Oedura Tryoni De Vis. 1)

1) Nachdem Boulenger sich überzeugt hat, dass der Name _Oedura ocellata_ von De Vis. wenn auch mangelfaft, so doch kenntlich, unter dem Namen _Oedura Tryoni_ be-
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W. 41

75. Oedura robusta Boul.

76. Oedura Lesueurii Dum. et Bibr.

77. Heteronota Derbyana Gray.

3633. Rockhampton. Hr. Salmin 1873. (2 Ex.)

Gattung Cnemaspis m.

Von κνημη, Unterschenkel, und ἀπις, Schild.

Das Hauptmerkmal dieser neuen Gattung, welche der Gattung Gonatodes Fitz. am nächsten verwandt ist, besteht in der Bekleidung der Innenseite der Unterschenkel mit flachen grossen Schildern, welche in Form und Anordnung den Tibialschildern der Lacer-tiden gleichen und meines Wissens bisher bei keinem Geckoniden beobachtet worden sind.

Memoires de l’Acad. Imp. des sciences Ville Series.
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W. 43

Oben bräunlichgrau, unten schmutzig weisslichgrau und einfarbig, nur auf dem Nacken und auf der vorderen Rückenhälfte finden sich einige ziemlich grosse tief schwarze Makeln von rundlicher oder länglicher Form; dieselben sind, wie folgt, vertheilt: gleich hinter dem Kopf auf der Mitte des Nackens stehen 2 Makeln, hinter diesen folgt eine bogenförmige Querreih von 4 ähnlichen und hinter diesen noch eine 2te gleichfalls bogenförmige Querreih von 7 etwas in die Länge gezogenen, von denen die jederseitige äusserste gerade vor der Schulter steht und die andern an Grösse übertrifft. Kurz vor der Mitte des Rückens endlich stehen noch 3 solcher Makeln in einer Querreih.

Maasse. Totallänge des Thieres — 152 Mm.; Länge des Kopfes 16 Mm., des Rumpfes 46 Mm., des Schwanzes 90 Mm.

702. Cuba. Berliner Museum 1868. (2 Ex.)
703. Cuba. Berliner Museum 1868. (2 Ex.)

80. Gonatodes caudiscutatus Günther.

4775. Fundort ? Hr. II. Schilling 1877.
6200. Yurimaguas. Dr. O. Staudinger 1883.
81. Gonatodes humeralis Guichen.
6005. Pebas am oberen Amazonas. Dr. O. Staudinger 1883. (4 Ex.)
6006. Pebas am oberen Amazonas. Dr. O. Staudinger 1883. (3 Ex.)

Bei unseren 4 Männchen (N 6005) ist die helle hufeisenförmige Binde auf dem Hinterkopfe, die auch Guichenot in seiner Figur angiebt, deren Boulenger aber nicht gedenkt, mehr oder weniger scharf und deutlich ausgebildet und von bläulicher Farbe.

82. Gonatodes indicus Gray.
705. Pegu.
5631. Neelgherries. British Museum 1880. (2 Ex.)

83. Gonatodes wynadensis Beddome.
5626. Wynaad. British Museum 1880. (2 Ex.)

84. Gonatodes ornatus Bedd.

85. Gonatodes marmoratus Bedd.

86. Gonatodes kandianus Kelaart.
5614. Ceylon. British Museum 1880. (3 Ex.)
6396. Ceylon. Dr. E. Riebeck* 1885. (2 Ex.)

87. Gonatodes gracilis Bedd.
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W. 45

88. Gonatodes Jerdonii Theob.

89. Gonatodes littoralis Jerdon.

90. Pristurus flavipunctatus Ruepp.

91. Pristurus rupestris Blauf.

92. Gymnodactylus caspius Eichw.

2940. Krasnowodsk. Dr. G. Radde 1870.
3186. Novo-Alexandrowsk. Dr. A. Lehmann 1842.
3188. Ostufer des Kaspischen Meeres. Dr. N. Sewerzow 1859.
3652. Kisy-Arwat. Dr. G. Sievers* 1873.
3653. Krasnowodsk. Dr. G. Sievers* 1873.
4039. Baku. Dr. O. von Grimm* 1875.
5234. Mungischlak. Dr. M. Bogdanow* 1878. (2 Ex.)
6313. Baku. Dr. O. von Grimm* 1875. (2 Ex.)
6530. Ak-Kala bei Astrabad. Hr. A. Nikolsky 1885. (3 Ex.)

Sämtliche Exemplare der akademischen Sammlung stammen aus dem Ufergebiet des kaspischen Meeres, die Sammlung der hiesigen Universität jedoch besitzt auch 2 Stücke, die Hrn. Alenizin auf der Insel Kug-Aral im Aralsee erbeutet hat, und ein von Dr. M. N. Bogdanow bei der Stadt Chiwa gefangenes junges Weibchen. Weiter nach Osten scheint Gymnodactylus caspius nicht mehr vorzukommen, denn die von Dr. Sewertzow unter diesem Namen aufgeführten Exemplare aus Turkestan gehören einer zwar nahe verwandten, aber doch verschiedenen Art, dem Gymnodactylus Fedtschenkoi, an.

93. Gymnodactylus Fedtschenkoi n. sp.

3387. Samarkand. Russische Entomologische Gesellschaft 1871. (2 Ex.)
5039. Samarkand. Hr. V. Russow 1874. (2 Ex.)
6355. Samarkand. Hr. V. Russow 1874. (4 Ex.)
6479. Ost-Buchara. Dr. A. Regel 1885.

Trotz der frappanten Aehnlichkeit, welche zwischen dieser Art und dem Gymnodactylus caspius Eichw. sowohl in der Form, als auch namentlich in der Färbung und Zeichnung besteht, lassen sich beide doch für alle Fälle mit Sicherheit durch folgende 4 Merkmale leicht von einander unterscheiden. 1) Die Tuberkeln auf dem Nacken, dem Hinterhaupt und den Schläfen sind bei der in Rede stehenden Art nicht bloss weniger dicht gestellt, sondern auch rund und einfach gewölbt, während sie bei der kaspischen Art deutlich triedrisch erscheinen und dabei so dicht gedrängt stehen, dass man die kleinen flachen Kornschuppen, mit denen sie untermischt sind, nur hin und wieder sieht. 2) Die Dorsaltuberkeln der neuen Art sind kleiner, nicht so dicht gedrängt und sehr deutlich gekielt, aber nur schwach triedrisch. 3) Die Bauchschuppen sind gleichfalls kleiner und bilden an der breitesten Stelle des
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W. 47

94. Gymnodactylus scaber Rüppell.

3696. Aegypten. Berliner Museum 1869. (2 Ex.)
4825. Koseir. Dr. C. B. Künzinger 1878. (3 Ex.)

95. Gymnodactylus Kotschyi Steindachner.

2824. Insel Syra. Hr. J. Erber 1870. (5 Ex.)
2825. Insel Syra. Hr. J. Erber 1870. (6 Ex.)

Schreiber\(^1\) bemerkt, dass bei dieser Art die Männchen äusserst selten sind, da er unter 50—60 Weibchen erst ein Männchen gefunden habe, und ich kann diese Angabe gleichfalls bestätigen, denn unter den 14 Exemplaren unseres Museums ist nur 1 einziges Männchen vorhanden, nämlich № 2977, die 12 Stücke aus Syra sind sämtlich weiblichen Geschlechts.

\[96.\] *Gymnodactylus Danilewskii n. sp.*

Diese neue Art ist dem *Gymnodactylus Kotschyi Steind.* zwar sehr nahe verwandt, unterscheidet sich von demselben aber durch den Besitz einer seitlichen Hautfalte, welche jederseits am Rumpfe zwischen den Vorder- und Hinterextremitäten verläuft und genau so beschaffen ist, wie die Hautfalte bei *Gekyra vorax* Gir.; ferner ist bei der neuen Art die Unterseite des Schwanzes nicht, wie bei *Gymnodactylus Kotschyi Steind.*, mit einer Längsreihe breiter Querschilder, sondern mit kleinen dachziegelförmig gelagerten Schuppen bekleidet, alsdann sind die Tuberkeln des Rückens etwas kleiner und dabei convexer, d. h. stärker dachförmig erhoben, bilden aber ebenfalls 12 ganz reguläre Längsreihen, in deren jeder die einzelnen Tuberkeln einander an Grösse gleich sind. Endlich besitzen die Männchen 6 Praenalporen, die in einer schwach dachziegelartig gestuften Querreihen stehen. Sonst stimmt *Gymnodactylus Danilewskii* in allen anderen Beziehungen mit *Gymnodactylus Kotschyi Steind.* überein und zeigt auch nahezu dieselbe Färbung und Zeichnung, indem er auf bräunlich-grauem Grund dunkelbraune, winklig geknickte, mit der Spitze nach hinten gerichtete Querbinden (Chevrons) auf Rumpf und Schwanz besitzt. Von *Gymnodactylus Russowii*, mit dem die in Rede stehende Art in der Bekleidung der unteren Schwanzfläche übereinstimmt, unterscheidet sie sich durch den Besitz der Hautfalte an den Rumpfseiten, durch die kleineren, aber unter einander gleichgrossen Rückentuberkeln und durch die Submentalschilder, welche ganz so beschaffen sind, wie bei *Gymnodactylus Kotschyi Steind.*

Maasse. Totallänge des Thieres — 79 Mm.; Länge des Kopfes 11 Mm., des Rumpfes 32 Mm., des Schwanzes 36 Mm.

Ich habe diese Art, von der mir bisher nur 2 Männchen und ein ganz junges Weibchen (№ 6542) bekannt geworden sind, dem kürzlich in Tiflis verstorbenen, um unser Fischereiwesen hochverdienten Wirkl. Staatsrath Danilewsky gewidmet, der das eine unserer Exemplare aus Jalta mitgebracht hat, wo es in einer Branntweinschenke (Kabak) gefangen worden ist.

\(^1\) Schreiber, Herpetologia europaea p. 492.

Ministère de l'Acad. imp. des sciences Villes Série.
dunklere Querbinden, die gewöhnlich nach hinten gerichtete Chevrons bilden; ebenso finden sich gewöhnlich auch auf dem Schwanz mehr oder weniger deutliche Querbinden und auf dem Kopfe lassen sich ausser der meist recht deutlichen Temporalbinde, die vom Hinterrande der Orbita zum Oberrande der Ohrspalte zieht, noch einige dunklere Makeln wahrnehmen, die aber weder in Zahl, noch in Form, noch in Stellung constant sind. Die Unterseite aller Theile ist schmutzig weiss und einfarbig.

Maassee. Totalänge des Thieres — 108 Mm.; Länge des Kopfes 15 Mm., des Rumpfes 33 Mm., des Schwanzes 60 Mm.

98. Gymnodactylus mauritianicus Dum. et Bibr.

701. Fundort? Kunstkammer. (2 Ex.)

Beide Exemplare sind zwar leidlich erhalten, aber absolut farblos und lassen auch keine Spur der einstmal's vorhanden gewesenen Zeichnungen wahrnehmen.

mit der von Boulenger gegebenen Charakteristik überein und gleich auf den ersten Blick wirklich dem *Gymnodactylus pelagicus* in ganz auffallender Weise, kann mit demselben aber schon wegen der grossen und dabei nicht gekielten Bauchschuppen in keinem Falle verwechselt werden.

100. *Gymnodactylus pelagicus* Girard.

706. Insel Viti. Museum Goddefroy 1868.

102. *Gymnodactylus khasiensis* Jerdon.

5624. Khasi Hills. British Museum 1880. (2 Ex.)

103. *Gymnodactylus marmoratus* Kuhl.

4454. Java. Dr. Winkel* 1876.

4455. Java. Dr. Winkel* 1876.

4615. Bali. Dr. Winkel* 1876.

104. Gymnodactylus philippinicus Steindachner.

1107. Insel Pulo Condor. Hr. A. Boucard 1869.

Unser Exemplar weicht von *Gymnodactylus marmoratus* durch die besonders an den Körperseiten stark konischen Tuberkeln und den Mangel der Schenkelporen ab, besitzt aber die Grube mit Analporen und kann somit nur zu dieser Art gerechnet werden.

105. Gymnodactylus pulchellus Gray.

106. Gymnodactylus Miliusii Bory de St. Vinc.

711. Melbourne. Hr. Niehoff 1862. (2 Ex.)
712. Melbourne. Hr. Niehoff 1862. (2 Ex.)
6072. Süd-Australien. Hr. G. Schneider 1883. (2 Ex.)
6408. Süd-Australien. Dr. E. Riebeck* 1885. (2 Ex.)

713. New South Wales. Dr. Paessler 1863.

Das größere unserer beiden Exemplare, № 4270, hat einen reproduzierten Schwanz, gehört also zu der Form, welche bisher für eine besondere Art, *Gymnodactylus inermis* Gray, galt.

3523. Tschehardé. (Mazanderan.) Dr. Th. Bienert 1869. (2 Ex.)

Sämtliche 7 Exemplare stammen von der unter Chanykow’s Leitung ausgeführten Chorassan-Expedition und sind todt im Sande gefunden worden; daher sind sie auch sämtlich vertrocknet, mit größtentheils losgelöster Epidermis und obendrüber noch schwanzlos, bis auf 2 Exemplare, bei denen sich dieses ganz eigenthümlich gestaltete Organ erhalten hat.
Gattung Alsophylax Fitzinger.

Nachdem ich den Bunopus tuberculatus Blanf. wegen der gekielten und granulirten Hypodactylschilder aus der Gattung Alsophylax ausgeschieden und als zu einer selbstständigen Gattung gehörig restituirt habe, sind mir im Ganzen 4 hierhergehörige Arten bekannt, die sich, wie folgt, von einander unterscheiden:

Die Tuberkeln auf der Oberseite des Körpers sind
1) rundlich und einfach gewölbt oder sehr undeutlich gekielt. Der Schwanz ist mit
 a) flachen, gleichartigen, einander mehr oder weniger dachziegelförmig deckenden Schuppen bekleidet, die in Ringel angeordnet sind. Die Tuberkeln auf dem Rumpfe
 a) sind ganz regellos zerstreut. Die Unterseite des Schwanzes mit einer Längsreihe breiterer Schil
der bekleidet 1. piliens.
 b) Ringeln von Dorntuberkeln besetzt .. 3. spinicauda.

2) triedrisch und bilden sehr dichtgestellte und regelmässige Längs-
 und Querreihen .. 4. loricatus.

3598. Berg Gross Bogdo (Gouv. Astrachan). Hr. A. Becker 1872. (3 Ex.)
3683. Fl. Syr-Darja. Dr. M. Bogdanow * 1873. (3 Ex.)
5798. Chark-Ujjur. Hr. S. Alpheraky* 1881. (6 Ex.)
5799. Chark-Ujjur. Hr. S. Alpheraky* 1881. (6 Ex.)
6563. Oestliche Tschungarei. Oberst N. M. Przewalsky* 1879.

Der Kopf ziemlich klein und leicht flachgedrückt. Die Schnauze stumpf und etwas länger, als der Durchmesser der Augenhöhle oder die Distanz zwischen dem Hinterrande der Orbita und der Ohröffnung; letztere sehr klein. Der Rumpf ziemlich gestreckt und sehr unbedeutend abgeflacht. Die Extremitäten ziemlich kurz, die vorderen, nach vorn ge-

110. Alsophylax Przewalskii n. sp.

5144. Unterer Tarim-Fluss (2500'). Oberst N. M. Przewalsky 1878. (2 Ex.)
6561. Oase Chami. Oberst N. M. Przewalsky 1879.
7016. Oase Tschertschen. Oberst N. M. Przewalsky 1886.
7030. Tschertschen-Darja. Oberst N. M. Przewalsky 1886. (4 Ex.)
7044. Lob-Nor. Oberst N. M. Przewalsky 1886. (4 Ex.)
Diese neue Art ist dem Alsophila pipiens zwar sehr nahe verwandt, unterscheidet sich von ihm aber schon auf den ersten Blick durch die in reguläre Längs- und Querreihen angeordneten Dorsaltuberkeln und durch die Bekleidung der Unterseite des Schwanzes, die nicht, wie bei jenem, aus einer Längsreihe von Querschildern besteht, sondern genau ebenso beschaffen ist, wie die Beschupfung auf der Oberseite.

Schwanz hin 8 solcher Reihen; von diesen Längsreihen ist die jederseitige dritte, von der Rückenfärste aus gerechnet, an längsten und setzt sich auch auf das vordere Drittel des Schwanzes fort, wird hier aber allmählich undeutlicher. Zugleich bilden diese Rückentuber-
keiln auch ziemlich reguläre Querreihen, die etwas schräg angeordnet sind, so dass eine jede solche Querreih ungefähr einen mit der Spitze gegen den Kopf gerichteten Chevron darstellt. Die Schuppen auf der Oberseite der Extremitäten sind denen des Rückens ganz ähnlich, aber größer und zwischen ihnen finden sich auf den Schienbeinen vereinzelte, mehr oder weniger deutliche Tuberkeln eingestreut. Die Bauchschuppen sind ziemlich gross, ebenso gross, wie die Rückentuberkeln, dabei flach, glatt und imbricat angeordnet; sie bilden in

Die Schuppen auf der Oberseite der Extremitäten sind denen des Rückens ganz ähnlich, aber größer und zwischen ihnen finden sich auf den Schienbeinen vereinzelte, mehr oder weniger deutliche Tuberkeln eingestreut. Die Bauchschuppen sind ziemlich gross, ebenso gross, wie die Rückentuberkeln, dabei flach, glatt und imbricat angeordnet; sie bilden in

Was die Färbung und Zeichnung anbetrifft, so ist die Grundfarbe der Oberseite hell gelblichbraun, also hell sandfarben, die der Unterseite bräunlichweiss. Auf dem jederseitigen Suprablabiale primum beginnt eine braune Längsbinde, die durch das Auge, von demselben natürlich unterbrochen, über den Oberen Theil der Schläfe auf den Rücken zieht, hier die 3be Tuberkelreihe, von der Rückenfärste aus gerechnet, deckt und sich gewöhnlich auch auf den Schwanz fortsetzt, wo sie entweder sehr bald verschwimmt, oder sich in einzelne Makeln

Jede dieser beiden Längsbinden ist auf dem Kopfe jederseits schneeweiß eingekantet, und zwar tritt namentlich die innere Kante, die durch eine vom Nasenloch zum Supraorbitalrande ziehende Linie gebildet wird, besonders deutlich hervor

Anders ist es, wenn der Ausdruck bei ih)r besteht. Die Unterschiede bestehen in der Art der Zeichnung auf der Unterseite. Die Makeln und Punkte sind kleinere, mehr oder weniger intensive, dunkle Punkte und bei manchen Exemplaren zeigen auch die Rumpfseiten und die Unterseite des Schwanzes ähnliche Punkte in grösserer oder geringer Anzahl. Die Unterseite des Kopfes, der Extremi-

Maasse. Totallänge des grössten mir vorliegenden Exemplars (♀) — 75 Mm.; Länge des Kopfes 10 Mm., des Rumpfes 23 Mm., des Schwanzes 42 Mm.

Eine detaillirte, von den nöthigen Zeichnungen begleitete Beschreibung dieser Art soll im herpetologischen Theile von General Przewalsky's Reisewerk erscheinen.
111. Alsophylax spinicauda n. sp. Fig. 15 u. 16.

1875. Schahbrud. Ihr. Christopf 1875.

Diese Art, die auf den ersten Blick an dem mit Dorntuberkeln besetzten Schwanz leicht zu erkennen ist, unterscheidet sich von ihren Gattungsgenossen ausserdem noch durch eine völlig abweichende Rückenbeschupung, die aus so grossen Kornschnuppen oder eigentlich Tuberkeln besteht, dass es fast schwer hält, die zwischen denselben zerstreuten wirklich Tuberkeln herauszufinden.

Maasse. Totallänge des Tijeres — 66 Mm.; Länge des Kopfes 12 Mm., des Rumpfes 25 Mm., des Schwanzes 29 Mm.

112. Alsophylax loricatus n. sp.

4196. Mbol-tan. Oberst A. Kuschakewitsch 1870. (2 Ex.)

Alsophylax loricatus unterscheidet sich von den 3 vorhergehenden Arten durch den Besitz von sehr grossen dermischen Tuberkeln auf Rücken und Schwanz, die in ganz reguläre Läns- und Querreihen angeordnet sind und dabei so dicht gedrängt stehen, dass das durch geradezu ein Rückenpanzer, ähnlich dem der Krokodile, entsteht.

Der Kopf ist klein, um ein Viertel etwa länger, als an den Mundwinkeln breit, und sehr deutlich flachgedrückt. Die Schnauze leicht zugespitzt, fast doppelt so lang, wie der
Durchmesser der Orbita, aber nur ebenso lang, wie der Abstand zwischen dem Hinterrande der Augenhöhle und der Ohröffnung. Diese letztere äusserst klein, fast punktförmig, steht, mit der Lupe betrachtet, eine kurze schräge Spalte dar; das Auge verhältnissmässig klein und, wie bei allen Arten dieser Gattung, mit senkrechter Pupille. Der Rumpf von gewöhnlicher spindeßförmiger Gestalt, etwas abgeflacht, die Extremitäten ziemlich kurz, die vorderen, nach vorn gekehrt und an den Körper angedrückt, erreichen kaum die Schnauzenspitze, die hinteren, ebenso behandelt, reichen knapp bis an die Achselhöhle; die Finger verhältnissmässig lang und sehr schlank. Der Schwanz lang, conisch zugespiitzt, an der Basis etwas abgeflacht, im weiteren Verlaufe nahezu drehrund. Der Kopf ist auf der Oberseite mit grossen, polygonalen, leicht convexen Schuppen bekleidet, die auf der Schneide grösser sind, als auf dem Hinterkopfe und an den Schläfen. Das Rostrale fast so breit, wie hoch, fünfeckig, am Hinterrande mit der gewöhnlichen Längsfurche, die hier bis zur halben Schilddicke reicht. Jederseits 7 sehr deutliche Supralabiale, die bis zum Mundwinkel reichen und von denen die 3 vorderen, vor dem Auge liegenden, vierseitig und mehr als doppelt so gross sind, wie die 4 hinteren. Das Nasenloch äusserst klein, liegt zwischen dem Rostrale, dem Supralabiale primum und 2 Nasalen, von welchen das innere, das mit dem der andern Seite in Berührung steht, mehr als fünfmal so gross ist, wie das äussere. Zwischen diesem letzteren und dem Vorderrande der Orbita findet sich eine Längsreihe von 3 grossen Schuppen, von denen die vorderste auf der Nath zwischen dem 1"- und 2" Supralabiale liegt, während die beiden anderen durch eine Längsreihe kleiner Schuppen von den entsprechenden Supralabialen, dem 2"- und 3"-Supralabiale, getrennt sind. Das Mentale ist gross, fast so breit wie lang und gleich einem mit der Spitze nach hinten gerichteten sphärischen Dreieck. Jederseits 7 Infra labialia, von denen aber die beiden letzten sehr klein und von den benachbarten Schuppen kaum verschieden sind; von den 5 vorderen sind die 3 ersten sehr gross und differiren unter einander nur sehr wenig an Grösse, während das 4" und 5" nur etwa halb so gross sind, wie jedes der 3 ersten. Submentalia finden sich im Ganzen 4, von denen die beiden mittleren, an einander grenzenden, fast doppelt so gross sind, wie die äusseren; nach aussen von diesen letzteren stehen noch 3—4 etwas grössere Schuppen, die an die Infralabialia grenzen, sonst ist die ganze übrige Unterseite des Kopfes mit feinen, fast ganz flachen Schuppen bekleidet, die nur in der unmittelbaren Nachbarschaft der Submentalia ein wenig grösser sind, als sonst. Der Rumpf und die Schwanzbasis sind mit sehr feinen Kornschuppen bekleidet, zwischen denen sehr grosse triëdrische Tubercken stehen. Diese Tubercken, die gleich hinter den Kopfe beginnen, sind im Nacken mehr rundlich und einfach stark convex, auf dem Rücken und der Schwanzbasis dagegen ausgesprochen triëdrisch und stehen dabei so dicht gedrängt, dass zwischen je 2 neben einander liegenden nur eine einzige, zwischen je 2 auf einander folgenden auf der Rückenmitte gleichfalls nur eine, seitlich dagegen mehrere Reihen der feinen kornförmigen Grundschuppen Platz haben. Sie bilden auf dem Rücken 12 ganz reguläre Längsreihen, deren Zahl sich auf dem Nacken und auf der Schwanzbasis auf 8 reducirt: zugleich stehen sie aber auch in ganz regulären Querreihen, die in der Weise

Das ganze Thier ist auf der Oberseite sehr hell bräunlichgelb, (im Leben vielleicht hell rosa), auf der Unterseite noch heller, fast weiss. Auf dem Kopf findet sich in der Zügelgegend eine ganz weisse, jederseits dunkel eingefasste Längsbinde, die vom 1ten Supralabiale gegen das Auge zieht und genau auf den 3 vorhin erwähnten grossen Frenalschuppen liegt. Die Labialia, sowohl die oberen, wie die unteren, sind sehr fein schwarz punktirt und ähnliche Punkte finden sich auch auf den meisten Dorsaltuberkeiën. Der Rumpf und die Extremitäten sind einfarbig, auf dem Schwanz dagegen treten 3 Längsreihen unregelmässiger, meist verschwommener, bräunlicher Makeln auf, die gegen das Ende desselben sich zu Querbinden vereinigen.

Maasse. Totallänge des Thieres — 70 Mm.; Länge des Kopfes 8 Mm., des Rumpfes 21 Mm., des Schwanzes 41 Mm.

113. Bunopus Blanfordii n. sp. Fig. 13 u. 14.

2823. Aegypten. Hr. J. Erber 1870. (2 Ex.)

Abgesehen von dem viel schmäleren, gestreckteren Kopfe und den deutlich gekielten Abdominalschuppen unterscheidet sich diese neue Art von dem ihr allerdings sehr nahe verwandten Bunopus tuberculatus Blaufl. noch durch die Beschaffenheit der Dorsalpholidosis. Bei der so eben genannten Art sind nämlich, soweit ich nach der von Blanford gegebenen
Figur urtheilen kann, die Rückentuberkeln, die 14 irreguläre Längsreihen bilden sollen, nicht bloss klein, sondern auch so weit auseinandergerückt, dass die sie trennenden Zwischenräume viel breiter erscheinen, als die Tuberkeln selbst, und dabei sollen, wie Blanford an-zeigt, nur die auf der Rückenmitte und auf der Schwanzbasis liegenden Tuberkeln triedrisch, die auf dem Nacken und auf den Körperseiten aber einfach convex sein. Bei der neuen Art dagegen sind auch die an den Flanken liegenden Tuberkeln triedrisch und nur im Nacken erscheinen sie einfach convex; ferner sind dieselben in 12 reguläre Längsreihen angeordnet und stehen dabei so dicht gedrängt, dass die sie trennenden Zwischenräume viel schmäler sind, als die Tuberkeln selbst, und nur in einzelnen Fällen höchstens die halbe Breite der-selben erreichen. Dadurch erhält das Thier ein auffallend rauhes Aussehen und erinnert in auffallender Weise an Gymnoderactus scaber, unter welchem Namen mir auch beide Exem-plare von Erber eingesandt worden sind; nach Aussage dieses letztern gehörten sie der Sammlung eines würtembergischen Prinzen an und waren als aus Ägypten stammend bezeichnet.

Maasse. Das kleinere unserer beiden Exemplare, ein Männchen, das hier abgebildet und insofern vollständiger ist, als an ihm nur ein kleiner Teil der Schwanzspitze reproduziert erscheint, zeigt folgende Dimensionen: Totallänge des Thieres — 83 Mm.; Länge des Kopfes 14 Mm., des Rumpfes 27 Mm., des Schwanzes 42 Mm.

Gattung Ptenodactylus m.

Von πτενός, geflügelt und δακτύλος, Finger.

Finger und Zehen nicht erweitert, mit langen schlanken Krallen versehen, an der Unterseite mit glatten und ganzrandigen, schmalen Querlamellen bekleidet und an beiden Seiten sehr deutlich gefranst; die pfriemenförmigen Franzen an den Zehen, wenn auch bei stärkerer Vergrößerung glatten Hypodactylschilder und das Vorhandensein von Franzen nicht bloss an den Zehen, sondern auch an den Fingern.

Die Art, auf welche ich die Gattung begründet habe, ist bereits vor mehr als 50 Jahren von Wiegmann kurz charakterisiert, von allen späteren Autoren, mit alleiniger Ausnahme Fitzinger's, aber verkannt worden, weshalb ich hier die Synonymie folgen lasse.

114. Ptenodactylus Eversmannii Wiegm.

2392. Am Flusse Irgis. Dr. A. Lehmann 1842.

2393. Aralo-kaspische Steppe. Dr. A. Lehmann 1842.

4326. Am Flusse Karakol. Dr. N. Sewerzow 1876.

4327. Am Flusse Kawan-Dshenma. Dr. N. Sewerzow 1876.

6496. Samarkand. Dr. A. Regel 1894.
Die feinere Kornschuppen ersetzt werden. Die Unterseite des Rumpfes, an welcher jederseits eine sehr undeutliche, gewöhnlich nur hinter der Achselhöhe sichtbare Hautfalte vorhanden ist, wird von sehr kleinen glatten, dachziegelförmig gelagerten Schuppen bekleidet, welche wenig mehr als doppelt so gross sind, wie die feinen Kornschuppen an der Kehle. Die Männchen besitzen eine schwach winklig geknickte Querreihen von 8—11 Analporen, während bei den Weibchen an derselben Stelle nur eine ebensolche Querreihe grösserer, aber durchaus undurchbohrter Schuppen vorhanden ist. Die Unterseite der Extremitäten ist mit flachen imbrizierten Schuppen bekleidet, die auf dem Oberschenkel ebenso gross, auf dem Unterschenkel aber doppelt so gross sind, wie die Bauchschruppen. Die Finger und Zehen sind ziemlich schlank und dünn, tragen auf der Oberseite kleine imbrizirende Schuppen, auf der unteren dagegen einfache glatte Querschilder und sind jederseits mit einer Reihe von pfriemenförmigen Frauen versehen, die an den Zehen doppelt so lang sind, wie an den Fingern, an welchen letzteren sie überhaupt nur bei Betrachtung von unten deutlich zu sehen sind.

Die Grundfarbe der Oberseite aller Theile ist sehr hell bräunlichgelb, also sandfarben, diejenige der Unterseite beträchtlich heller. Jederseits am Kopfe findet sich eine dunkelbraune Längsbinde, die auf dem Rostrale beginnt, über das Nasenloch gegen das Auge zieht, sich hinter demselben auf den Rumpf fortsetzt und sich kurz vor Beginn der hinteren Rumpfhälften in einzelne Makeln von sehr verschiedener und variabler Form auflöst. Ferner sind sämtliche Labialia, sowohl die oberen, als auch die unteren, dunkelbraun gefleckt, und an den oberen diesen die Flecken sogar zu einer kurzen Längsbinde zusammen, welche den Oberrand der Supralabialia und die an dieselben grenzenden Schuppen der Frenalgegend deckt. Ausser diesen Binden sieht man auf dem Kopfe noch mehr oder weniger zahlreiche und sowohl in der Form, als auch in der Anordnung ganz irreguläre, dunkelbraune Flecken und Punkte, die sich auch auf den Rumpf fortsetzen und in der Vertebralgegend gewöhnlich zu kurzen, ganz irregulären Querbinden, seltener zu 2 mehr oder weniger häufig unterbrochenen Längsbinen zusammenfallen, während sie seitlich als einzelne Punkte auftreten, die grössentheils, aber keineswegs immer, mit den grossen Tuberkeln zusammenfallen und folglich in Längsreihen angeordnet sind. Auf dem Schwanz bilden diese Makeln ganz deutliche, wenn auch nicht immer ganz reguläre Querbinden und auf den Extremitäten sind sie so angeordnet, dass sie ein grossmaschiges Netzwerk darstellen, das aber auf den Vorderextremitäten sehr undeutlich ist. Alle diese braunen Zeichnungen, die auf der Unterseite durchaus fehlen, bestehen, unter der Lupe betrachtet, aus sehr feinen schwarzlichen Punkten.

Maasse. Das grössere der von mir untersuchten Exemplare gehört dem Moskauer Museum und zeigt folgende Dimensionen: Totallänge 144 Mm., Länge des Kopfes 15 Mm., des Rumpfes 39 Mm., des Schwanzes 90 Mm.

Ausser den 7 Exemplaren der akademischen Sammlung habe ich von dieser Art noch 2 andere untersucht, von denen das eine dem Moskauer Museum gehört und vom verstor-
BEMERKUNGEN ÜBER DIE GECKONIDEN-SAMMLUNG U. S. W.

Eine Abbildung dieser Art habe ich bereits anfertigen lassen und soll dieselbe im herpetologischen Theil von A. P. Fedtschenko's Reise erscheinen.

115. Stenodactylus guttatus Cuv.

714. Aegypten. Dr. Clot-Bey 1842.
2827. Insel Syræ. Hr. J. Erber 1870. (2 Ex.)
2833. Fandort ? Hr. J. Erber 1870. (2 Ex.)
5240. Libysche Wüste. Dr. W. Junker 1878. (2 Ex.)

5378. Batna. Hr. Deyrolle 1879. (2 Ex.)

Bei beiden Exemplaren, die ich hier unter diesem Namen aufführe, nimmt das Rostral­schild keinen Antheil an der Begrenzung des Nasenlochs, sondern ist dadurch, dass das jederseitige innere Nasalschild sich vor das letztere legt und mit dem ersten Supralabiale in Verbindung steht, vom Nasenloch ausgeschlossen. Dabei sind die Schuppen auf der Ober­sseite des Kopfes und Rumpfes fast ganz flach, die Extremitäten auffallend lang und auch die Schnauze scheint etwas mehr zugespitzt zu sein, jedoch nur in sehr geringem Grade. Die Anordnung der das Nasenloch umgebenden Schilder stimmt also mit den Angaben Bou­lenger's vollkommen überein, hat aber freilich auch nicht die geringste Aehnlichkeit mit der von Boulenger gegebenen Abbildung des Kopfes von Stenodactylus Wilkinsonii; jedoch hat das nichts zu bedeuten, denn diese Abbildung muss ganz ohne allen Zweifel falsch sein, da sie mit der hier allein maassgebenden Beschreibung in direktem Widerspruche steht. Boulenger sagt ausdrücklich: «Nostril pierced in the centre of a very strong swelling between the first labial and three nasals», auf der Figur dagegen ist das 1-ste Labialschild vom Nasenloch durch ein Nasale getrennt, so dass das Nasenloch genan so gelegen ist, wie bei den Arten der Gattung Eremitas, d. h. zwischen 3 Nasalschildern. Die Zeichnung ist daher ohne allen Zweifel fehlerhaft und unsere beiden Exemplare aus Algerien werden richtig be­
stimmt sein. Uebrigens kann ich nicht umhin zu bemerken, dass mir die Differenz in den das Nasenloch umgebenden Schildern keineswegs von grosser Bedeutung zu sein scheint, denn an einem Stenodactylus guttatus aus Algerien (N 715) liegt das jederseitige innere Nasalschild ganz ähnlich, wie bei unserem Stenodactylus Wilkinsonii, nur zieht es nicht so weit nach vorn und bildet auch mit dem 1-sten Supralabiale keine Sutur, so dass die obere Aussenecke des Rostrale doch noch an das Nasenloch herantritt. Die Hauptmerkmale, durch welche sich Stenodactylus Wilkinsonii von dem ihm jedenfalls äusserst nahe verwandten Stenodactylus guttatus unterscheidet, bestehen somit in der Beschupfung und in der Länge der Extremitäten; die Beschupfung besteht bei dem ersteren, wie schon bemerkt, aus ganz flachen Schuppen, die bei Stenodactylus guttatus im Gegentheil recht stark gewölbt sind, und die Extremitäten, besonders die hinteren, reichen, nach vorn gekrümmt und an den Rumpf angedrückt, bei Stenodactylus Wilkinsonii weit bis über die Achsel, fast bis an das Ohr, während sie bei Stenodactylus guttatus, ebenso behandelt, knapp die Achselhöhle berühren.

117. Plenopus garrulus Smith.

Ueber die Bekleidung der Unterseite an den Fingern und Zehen bei dieser Art existiren einander widersprechende Angaben, indem Gray¹) behauptet, dass dieselbe an den Fingern aus einfachen glatten, aber convexen Querlamellen, an den Zehen dagegen aus 3—4 Reihen von gekielten Schuppen besteht, während Cope²) und Boulenger angeben, dass sowohl an den Fingern, als auch an den Zehen nur einfache und glatte Querlamellen vorhanden sind. Nach genauer Untersuchung der mir vom British Museum freundlichst überlassenen jungen Exemplaren habe ich gefunden, dass sowohl an den Fingern, als auch an den Zehen, wie Cope und Boulenger ganz richtig angeben, Querlamellen vorhanden sind, dass aber diese Querlamellen an den Zehen, und in geringerem Grade auch an den Fingern, in ähnlicher Weise, wie bei den Arten der Gattung Bunopus, mit vorspringenden Tuberkeln besetzt sind, nur treten diese Tuberkeln erst bei starker Vergrösserung deutlich zu Tage, bei Betrachtung durch eine gewöhnliche Lupe lassen sich nur so leise Spuren derselben wahrnehmen, dass man die Querlamellen einfach für glatt erklären kann.

118. Teratoscincus Keyserlingii Strauch.

Teratoscincus scincus Boulenger. Catal. I, p. 12, pl. II. f. 3.

2395. Seri-Tschah (Kirman). Graf E. Keyserling⁵ 1862.
2396. Seri-Tschah (Kirman). Graf E. Keyserling⁵ 1862.

Der Kopf, dessen Höhe etwa zwei Drittel seiner Breite in der Ohrgegend gleichkommt, ist gross, dick, auf dem Scheitel abgeflacht und etwa um ein Drittel länger, als in der Ohrgegend breit. Die Schnauze ziemlich stumpf zugerundet, übertrifft den Durchmesser der Orbita etwa um die Hälfte an Länge und ist um ein Drittel etwa länger, als der Abstand zwischen dem Hinterrande der Orbita und der Ohröffnung, dabei erscheint sie gewölbt, ohne deutlichen Canthus rostralisis. Das Auge gross; die Pupille senkrecht, suboval und gleichfalls gross. Das obere Augenlid bildet einen abgerundeten, am freien Rande leicht crembräten Lappen, das untere fehlt ganz. Die Ohröffnung gross, fast halb so gross, wie der Bulbus, bildet eine schräge, aber doch fast horizontal gestellte, breite Spalte. Der Rumpf spindelförmig, deutlich abgeflacht, die Extremitäten kurz und kräftig, die vorderen, nach vorn gerichtet und an den Körper angedrückt, erreichen das Nasenloch nicht, und die hinteren, ebenso behandelt, berühren den Ellenbogen der nach hinten gerichteten Vorderextremitäten. Die Zehen kurz und ziemlich dick, der Schwanz ziemlich kurz und dick, conisch zusitzespitzt, an der Basis kaum merklich abgeflacht, an der Spitze dagegen sogar leicht komprimirt. Der Kopf ist auf der Oberseite mit ziemlich feinen Kornschuppen bekleidet, die auf der Schranze etwas grösser sind, als auf dem Hinterkopfe und an den Schläfen. Das Rostrale, um die Hälfte etwa breiter, als hoch, hat die Form eines Parallelogramms und besitzt am Hinterrande die gewöhnliche Längsfurche, die hier aber kurz ist und kaum bis zur halben Schildlänge reicht. Jederseits finden sich 10—13 Supralabialia, die viereckig sind und nach hinten zu allmählich an Grösse abnehmen. Das Nasenloch liegt zwischen dem Rostrale und 3 besonderen Nasalen, von denen das mittlere am kleinsten ist; das innerste steht mit dem gleichnamigen Schilder der anderen Seite in direkter Berührung und dass äusserste besitzt an seinem unteren Theile einen kurzen Fortsatz, der mit dem Rostrale in Berührung steht, sich folglich zwischen das Nasenloch und das Supralabiale primum legt und letzteres von dem Nasenloche scheidet. Das Mentale ist um ein Geringes breiter und etwa um die Hälfte länger, als das Rostrale, und besitzt abgerundete Hinterenden. Jederseits neben denselben stehen 10—13 Infrafalabialia, die ebenfalls viereckig sind und nach hinten zu an Grösse allmählich abnehmen. Von Submentalen finde ich nur 2 kleine runde Schilde, von denen jedes den Winkel zwischen dem weit nach hinten vorragenden Mentale und dem beträchtlich kürzeren Infrafalabiale primum ausfüllt und nach aussen noch einige wenige, kleine, schuppenähnliche Schilde, neben sich hat, die direkt an die Infrafalabialia grenzen. Die übrige Unterseite des Kopfes ist mit kleinen unregelmässigen, ziemlich convexen und dabei unter einander an Grösse mehr oder weniger differirenden Schup-
Dr. A. Strauch,

pen bedeckt. Der Rumpf ist rundherum mit grossen, glatten, einander dachziegelförmig deckenden Cycloid-Schuppen bekleidet, die an der Unterseite etwa um ein Viertel grösser sind, als auf der Oberseite, und an der breitesten Stelle des Körpers 29—34 Längsreihen bilden. Auf der Unterseite beginnen diese Cycloid-Schuppen gleich hinter dem Kopfe, und zwar sind sie anfanglich klein und werden successive grösser, so dass sie keineswegs scharf von den Kehlschuppen geschieden sind, sondern ganz allmählich in dieselben übergehen. Auf der Oberseite dagegen, wo die Cycloid-Schuppen auf dem Occiput beginnen, sind sie zwar kleiner, als auf dem Rücken, aber doch sehr scharf von den feinen Kornschuppen des Hinterkopfes geschieden. Da die Seiten des Halses, von Ohr bis zur Achselhöhle mit eben-solchen Kornschuppen bekleidet sind, wie der Hinterkopf, so nehmen die Cycloid-Schuppen auf dem Nacken nur einen verhältnissmässig schmalen dreieckigen Rann ein, bilden also, so zu sagen, eine Schnibbe, deren Spitze auf dem Occiput liegt. Die Extremitäten sind mit ganz ähnlichen imbricaten Cycloid-Schuppen bekleidet, wie der Rumpf, nur sind dieselben etwas kleiner und werden an der Hinterseite der Oberschenkel, an den Weichen und an der Innenseite der Oberarme durch mehr oder weniger feine Kornschuppen ersetzt. Auf der Oberseite der Finger und Zehen finden sich gleichfalls imbricate Schuppen, während die Unterseite dieser Theile äusserst fein granulirt erscheint; dabei sind sowohl Finger, als auch Zehen beiderseits mit je einer Reihe ziemlich langer pfirmenförmiger Franzen besetzt. Der Schwanz ist rundherum mit imbricaten Schuppen bekleidet, trägt aber auf der Oberseite seiner 2 letzten Drittel eine Reihe grosser, halbmondförmiger, an Kuppenwellig erinnernder, einander dachziegelförmig deckender, glatter Schilder, deren Zahl zwischen 10 und 14 schwankt und die gegen die Schwanzspitze hin natürlich successive an Grösse abnehmen.

Die Grundfarbe der Oberseite aller Theile ist schmutzig weiss (im Leben vielleicht rosenroth d. h. fleischfarben), die der Unterseite reiner weiss. Der Kopf zeigt oben mehr oder weniger deutliche, durchaus unregelmässige und oft zusammenfließende braune oder selbst schwärzliche Makeln und Binden, die bei stärkerer Ausbildung, namentlich bei halb-wüchsigen Exemplaren, geradezu ein Netzwerk bilden. Der Rumpf ist gleichfalls mit dunklen Zeichnungen geziert, die aber höchst unregelmässig erscheinen und bei den Jungen deutliche Querbinden darstellen, während sie bei älteren Stücken überhaupt undeutlicher sind und bald gleichfalls Querbinden darstellen, bald jedoch auch zu häufig unterbrochenen Längsbinden angeordnet sind. Die Extremitäten sind ebenso, wie die Unterseite, einfarbig, der Schwanz dagegen zeigt bei den Jungen auf der Oberseite 3 breite braune Querbinden, von denen die vorderste stets auf dem ersten der grossen halbmondförmigen Schilder steht, während die beiden andern sowohl von der ersten, als auch von einander durch gleiche Zwischenräume getrennt sind, aber doch keine ganz constante Lage haben, so findet sich die letzte bei dem Exemplar N° 2396 auf dem letzten, bei dem Exemplar N° 2397 dagegen auf dem viertletzten halbmondförmigen Schilde. Bei den ausgewachsenen Stücken ist von diesen Binden keine Spur wahrzunehmen und der Schwanz erscheint bei ihnen sowohl oben, als auch unten durchaus einfarbig.
Maasse: Totallänge des Thieres — 158 Mm.; Länge des Kopfes 29 Mm., des Rumpfes 73 Mm., des Schwanzes 56 Mm.

119: Teratoscincus Przewalskii n. sp.

Maasse. Totallänge des Thieres — 133 Mm.; Länge des Kopfes 23 Mm., des Rumpfes 60 Mm., des Schwanzes 50 Mm.

120. Chondrodactylus anguifer Peters.

121. Eublepharis macularius Blyth.

122. Coleonyx elegans Gray.
INHALTSVERZEICHNIS.

<table>
<thead>
<tr>
<th>Seite</th>
<th>Einleitung</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Dichotomische Tabelle zur Bestimmung der Geckoniden-Gattungen</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Verzeichniss der im zoologischen Museum der Kaiserlichen Akademie der Wissenschaften aufgestellten Geckoniden</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1. Thecadactylus rapicauda Hout.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2. Phelsuma Cepedianum Merr.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3. » Guentheri Blg.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4. » madagascariense Gray</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5. » laticauda Btg.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6. » lineatum Gray</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7. Pachydactylus Bibronii Smith</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8. » capensis Smith</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9. » ocellatus Oppel.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>10. » maculatus Smith</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>11. Tarentola facetana Aldrov.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>12. » neglecta n. sp.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>13. » angusticeps n. sp.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>14. » Delandnii D. et B.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>15. » aegyptica Cuv.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>16. Aeluronyx seychellensis D. et B.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>17. Ptychozoon homalocephalum Crev.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>18. Gecko vermicillatus Lour.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>19. » vitatus Houtt.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>20. » hivittatus D. et B.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>21. » monarchus Schlg.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>22. » japonicus D. et B.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>23. Rhacodactylus auriculatus Bavay</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>24. » dilatatus Guich.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>25. Hoplodactylus maculatus Btg.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>26. » anamallensis Gntrh.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27. Lepidodactylus aurantiacus Bedd.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28. » Ingubris D. et B.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29. Lepidodactylus cyclurus Gntrh.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>30. Lygodactylus capensis Smith</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>31. » picturatus Pers.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>32. Peripia mutilata Wiegm.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>33. » variegata D. et B.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>34. Gehyra ocellata Lesson</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>35. » voax Girard</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>36. » Fischeri n. sp.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>37. Hemidactylus frenatus D. et B.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>38. » malonia Moreau.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>39. » fasciatus Gray.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>40. » Bocagii Big.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>41. » tuericus L.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>42. » Brookii Gray</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>43. » Gleadowii Murray</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>44. » maculatus Gray</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>45. » triedras Daud.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>46. » depressus Gray</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>47. » Leschenuitii D. et B.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>48. » Coctaei D. et B.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>49. » flavoviridis Ruepp.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>50. » Bowringii Gray</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>51. » Garnotii D. et B.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>52. » platynus Schneid.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>53. Ptyodactylus gecko Hasselt.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>54. Uroplatus tymbratus Schneid.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>55. Sphaerodactylus elegans R. et L.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>56. » punctatissimus D. et B.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>57. » glaucus Cope</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>58. » torquatus n. sp.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>59. » Copei Steind.</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>60. » anthracinus Cope</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>61. Phyllocaudatus tuberculatus Wiegm.</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>62. » pulcher Gray</td>
<td></td>
</tr>
</tbody>
</table>
63. Phyllodactylus galapagensis Pfrs. 38
64. » pictus Pfrs. 38
65. » porphyreus D. et B. 39
66. » marmoratus Gray 39
67. » affinis Blc. 39
68. » europaeus Géné 39
69. Diplolepis spinigera Gray 40
70. » strophiatus D. et B. 40
71. » vittatus Gray 40
72. » polyophtalmus Guthr. 40
73. Oedura marmorata Gray 40
74. » Tryoni De Vis 40
75. » robusta Blc. 41
76. » Lesueurii D. et B. 41
77. Heteronota Derbyana Gray 41
78. Caenaspis Boulegerii n. sp. 42
79. Gonatodes albogularis D. et B. 43
80. » candidus Boul. 43
81. » humeralis Guich. 44
82. » indicus Gray 44
83. » wynadeni Boul. 44
84. » ornatus Bedd. 44
85. » marmoratus Bedd. 44
86. » kandianus Kelaart 44
87. » gracilis Bedd. 44
88. » Jerdonii Thel. 45
89. » littoralis Jerd. 45
90. Pristurus flavipunctatus Ruepp. 45
91. » upestris Blau. 45
92. Gymnoderopus caespis Eichw. 45

Erklärung der Tafel.

Fig. 1. 2. Tarentola angusticeps n. sp. 38
 3. 4. » neglecta n. sp. .. 38
 5. 6. Gehyra Fischeri n. sp. .. 38
 7. 8. 9. Caenaspis Boulegerii n. sp. 38
 10. 11. 12. Gymnoderopus Russowii n. sp. 38
 13. 14. Dunopus Blanfordii n. sp. 38
 15. 16. Alsophylax spinicauda n. sp. 38

Berichtigung.

Auf p. 7 muss es statt Aelurascalebotes überall Aeluroscalabotes heissen.